Distribution and frequency of galls induced by Anisodiplosis waltheriae Maia (Diptera: Cecidomyiidae) on the invasive plant Waltheria indica L. (Sterculiaceae). (65/273)

The frequency of galls induced by Anisodiplosis waltheriae Maia, a recently described species, on Waltheria indica L. was studied. W indica is an invasive weed in regeneration areas of Atlantic Forest in southeastern Brazil. Plants were collected in May 2004 and above-ground biomass, main stem length, number of leaves, number of galls per leaf and leaf area of each individual were recorded. Nearly 90% of all plants and 25% of all leaves were attacked by the gall midge, with an average of 0.67 galls/leaf. Leaf area had a weak effect on gall abundance while the number of leaves had no effect on gall abundance. Only 31% of the variation in gall abundance was explained by plant biomass. Natural enemies killed one third of the sampled galls. Predation accounted for 22.9% of gall mortality, unknown factors killed 7.6%, microhymenopteran parasitoids killed 2.5% and fungi only 1%. Mortality factors were not influenced by leaf area or gall density.  (+info)

The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator. (66/273)

During the infection of plants, Agrobacterium tumefaciens introduces several Virulence proteins including VirE2, VirF, VirD5 and VirE3 into plant cells in addition to the T-DNA. Here, we report that double mutation of virF and virE3 leads to strongly diminished tumor formation on tobacco, tomato and sunflower. The VirE3 protein is translated from a polycistronic mRNA containing the virE1, virE2 and virE3 genes, in Agrobacterium. The VirE3 protein has nuclear localization sequences, which suggests that it is transported into the plant cell nucleus upon translocation. Indeed we show here that VirE3 interacts in vitro with importin-alpha and that a VirE3-GFP fusion protein is localized in the nucleus. VirE3 also interacts with two other proteins, viz. pCsn5, a component of the COP9 signalosome and pBrp, a plant specific general transcription factor belonging to the TFIIB family. We found that VirE3 is able to induce transcription in yeast when bound to DNA through the GAL4-BD. Our data indicate that the translocated effector protein VirE3 is transported into the nucleus and there it may interact with the transcription factor pBrp to induce the expression of genes needed for tumor development.  (+info)

Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. (67/273)

Genetic transformation of plant cells by Agrobacterium tumefaciens represents a unique case of trans-kingdom sex requiring the involvement of both bacterial virulence proteins and plant-encoded proteins. We have developed in planta and leaf-disk assays in Nicotiana benthamiana for identifying plant genes involved in Agrobacterium-mediated plant transformation using virus-induced gene silencing (VIGS) as a genomics tool. VIGS was used to validate the role of several genes that are either known or speculated to be involved in Agrobacterium-mediated plant transformation. We showed the involvement of a nodulin-like protein and an alpha-expansin protein (alpha-Exp) during Agrobacterium infection. Our data suggest that alpha-Exp is involved during early events of Agrobacterium-mediated transformation but not required for attaching A. tumefaciens. By employing the combination of the VIGS-mediated forward genetics approach and an in planta tumorigenesis assay, we identified 21 ACG (altered crown gall) genes that, when silenced, produced altered crown gall phenotypes upon infection with a tumorigenic strain of A. tumefaciens. One of the plant genes identified from the screening, Histone H3 (H3), was further characterized for its biological role in Agrobacterium-mediated plant transformation. We provide evidence for the role of H3 in transfer DNA integration. The data presented here suggest that the VIGS-based approach to identify and characterize plant genes involved in genetic transformation of plant cells by A. tumefaciens is simple, rapid, and robust and complements other currently used approaches.  (+info)

Protein parameters of differential gene activation during development and tumorigenesis. (68/273)

Various models of normal and abnormal developmental systems were addressed to get an insight into molecular parameters of cell differentiation at the level of protein gene products. Electrophoretic analysis of heterogeneous protein mixtures permitted qualitative analysis of developing systems, particularly during organogenesis in mammals, as well as of neoplastic growth in the animal and plant kingdoms. From our earlier findings indicating that the definite protein patterns characteristic of adult organs are acquired long after the adult morphological and histological characteristics of these tissues have developed, it has been repeatedly proven that quantitative changes in whole proteins is not a dependable indicator of cell differentiation.  (+info)

Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. (69/273)

The plant pathogen Agrobacterium tumefaciens induces the formation of crown gall tumours at wound sites on host plants by directly transforming plant cells. This disease strategy benefits the bacteria as the infected plant tissue produces novel nutrients, called opines, that the colonizing bacteria can use as nutrients. Almost all of the genes that are required for virulence, and all of the opine uptake and utilization genes, are carried on large tumour-inducing (Ti) plasmids. The observation more than 25 years ago that specific opines are required for Ti plasmid conjugal transfer led to the discovery of a cell-cell signalling system on these plasmids that is similar to the LuxR-LuxI system first described in Vibrio fischeri. All Ti plasmids that have been described to date carry a functional LuxI-type N-acylhomoserine lactone synthase (TraI), and a LuxR-type signal receptor and transcriptional regulator called TraR. The traR genes are expressed only in the presence of specific opines called conjugal opines. The TraR-TraI system provides an important model for LuxR-LuxI-type systems, especially those found in the agriculturally important Rhizobiaceae family. In this review, we discuss current advances in the biochemistry and structural biology of the TraR-TraI system.  (+info)

Novel SCAR primers for specific and sensitive detection of Agrobacterium vitis strains. (70/273)

An Agrobacterium vitis-specific DNA fragment (pAVS3) was generated from PCR polymorphic bands amplified by primer URP 2R. A. vitis specificity of this fragment was confirmed by Southern hybridization with genomic DNA from different Agrobacterium species. Sequence-characterized amplified region (SCAR) markers were developed for A. vitis specific detection, using 24-mer oligonucleotide primers designed from the flanking ends of the 670bp insert in pAVS3. The SCAR primers amplified target sequences only from A. vitis strains and not from other Agrobacterium species or other bacterial genera. First round PCR detected bacterial cells between 5x10(2) and 1x10(3)cfu/ml and the detection sensitivity was increased to as few as 2cfu/ml by nested PCR. This PCR protocol can be used to confirm the potential presence of infectious A. vitis strains in soil and furthermore, can identify A. vitis strains from naturally infected crown galls.  (+info)

Plant parasitic nematode proteins and the host parasite interaction. (71/273)

This review focuses on the proteins and secretions of sedentary plant parasitic nematodes potentially important for plant-nematode interactions. These nematodes are well equipped for parasitism of plants. Having acquired the ability to manipulate fundamental aspects of plant biology, they are able to hijack host-cell development to make their feeding site. They feed exclusively from feeding sites as they complete their life cycle, satisfying their nutritional demands for development and reproduction. Biochemical and genomic approaches have been used successfully to identify a number of nematode parasitism genes. So far, 65 204 expressed sequence tags (ESTs) have been generated for six Meloidogyne species and sequencing projects, currently in progress, will underpin genomic comparisons of Meloidogyne spp. with sequences of other pathogens and generate genechip microarrays to undertake profiling studies of up- and down-regulated genes during the infection process. RNA interference provides a molecular genetic tool to study gene function in parasitism. These methods should provide new data to help our understanding of how parasitic nematodes infect their hosts, leading to the identification of novel pathogenicity genes.  (+info)

Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. (72/273)

Streptomyces turgidiscabies, a cause of potato scab, possesses a mobilizable pathogenicity island containing multiple virulence genes and a cytokinin biosynthetic pathway. These biosynthetic genes are homologous and collinear with the fas operon in Rhodococcus fascians. Reverse-transcriptase polymerase chain reaction of S. turgidiscabies demonstrated that all six genes were transcribed in oat bran broth with and without glucose, though transcription was partially repressed by glucose. The supernatant of S. turgidiscabies cultures had cytokinin activity in callus initiation and differentiation assays. Arabidopsis and tobacco plants inoculated with a thaxtomin-deficient mutant (deltanos) produced leafy galls, indistinguishable from those produced by R. fascians. Deletion of the ipt gene in the pathway eliminated gall phenotype. Other symptoms on tobacco included production of hairy roots and de novo meristems.  (+info)