The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic-nematode interactions in Medicago truncatula. (33/273)

Plants associate with a wide range of mutualistic and parasitic biotrophic organisms. Here, we investigated whether beneficial plant symbionts and biotrophic pathogens induce distinct or overlapping regulatory pathways in Medicago truncatula. The symbiosis between Sinorhizobium meliloti and this plant results in the formation of nitrogen-fixing root nodules requiring the activation of specific genes in the host plant. We studied expression patterns of nodule-expressed genes after infection with the root-knot nematode Meloidogyne incognita. Two regulators induced during nodule organogenesis, the early nodulin gene ENOD40 involved in primordium formation and the cell cycle gene CCS52a required for cell differentiation and endoreduplication, are expressed in galls of the host plant. Expression analysis of promoter-uidA fusions indicates an accumulation of CCS52a transcripts in giant cells undergoing endoreduplication, while ENOD40 expression is localized in surrounding cell layers. Transgenic plants overexpressing ENOD40 show a significantly higher number of galls. In addition, out of the 192 nodule-expressed genes tested, 38 genes were upregulated in nodules at least threefold compared with control roots, but only two genes, nodulin 26 and cyclin D3, were found to be induced in galls. Taken together, these results suggest that certain events, such as endoreduplication, cell-to-cell communication with vascular tissues, or water transport, might be common between giant cell formation and nodule development.  (+info)

Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens. (34/273)

Deoxyfructosyl glutamine (DFG, referred to elsewhere as dfg) is a naturally occurring Amadori compound found in rotting fruits and vegetables. DFG also is an opine and is found in tumors induced by chrysopine-type strains of Agrobacterium tumefaciens. Such strains catabolize this opine via a pathway coded for by their plasmids. NT1, a derivative of the nopaline-type A. tumefaciens strain C58 lacking pTiC58, can utilize DFG as the sole carbon source. Genes for utilization of DFG were mapped to the 543-kb accessory plasmid pAtC58. Two cosmid clones of pAtC58 allowed UIA5, a plasmid-free derivative of C58, harboring pSa-C that expresses MocC (mannopine [MOP] oxidoreductase that oxidizes MOP to DFG), to grow by using MOP as the sole carbon source. Genetic analysis of subclones indicated that the genes for utilization of DFG are located in a 6.2-kb BglII (Bg2) region adjacent to repABC-type genes probably responsible for the replication of pAtC58. This region contains five open reading frames organized into at least two transcriptional soc (santhopine catabolism) groups: socR and socABCD. Nucleotide sequence analysis and analyses of transposon-insertion mutations in the region showed that SocR negatively regulates the expression of socR itself and socABCD. SocA and SocB are responsible for transport of DFG and MOP. SocA is a homolog of known periplasmic amino acid binding proteins. The N-terminal half of SocB is a homolog of the transmembrane transporter proteins for several amino acids, and the C-terminal half is a homolog of the transporter-associated ATP-binding proteins. SocC and SocD could be responsible for the enzymatic degradation of DFG, being homologs of sugar oxidoreductases and an amadoriase from Corynebacterium sp., respectively. The protein products of socABCD are not related at the amino acid sequence level to those of the moc and mot genes of Ti plasmids responsible for utilization of DFG and MOP, indicating that these two sets of genes and their catabolic pathways have evolved convergently from independent origins.  (+info)

Agrosuppression: a bioassay for the hypersensitive response suited to high-throughput screening. (35/273)

We describe a novel method, agrosuppression, that addresses the need for an assay of the hypersensitive response (HR) in intact plants that is rapid and adapted to high-throughput functional screening of plant and pathogen genes. The agrosuppression assay is based on inoculation of intact plants with a mixture of Agrobacterium tumefaciens strains carrying (i) a binary plasmid with one or more candidate HR-inducing genes and (ii) a tumor-inducing (oncogenic) T-DNA. In the absence of HR induction, tumor formation is initiated, resulting in a typical crown gall phenotype. However, upon induction of the HR, tumor formation by the oncogenic T-DNA is suppressed, resulting in a phenotype that can be readily scored. We tested and optimized agrosuppression in Nicotiana benthamiana using the inf1 elicitin gene from the oomycete pathogen Phytophthora infestans, which specifically induces the HR in Nicotiana spp., and the gene-for-gene pair Avr9/Cf-9 from the fungal pathogen Cladosporium fulvum and Lycopersicon pimpinellifolium (currant tomato), respectively. Agrosuppression protocols that can be rapidly performed using simple mechanical wounding of petioles of intact N. benthamiana plants were developed and appeared particularly adapted to intensive high-throughput screening. This assay promises to greatly facilitate the cloning of novel plant R genes and pathogen Avr genes and to accelerate functional analyses and structure-function studies of these genes.  (+info)

Evidence for diverse types of large plasmids in tumor-inducing strains of Agrobacterium. (36/273)

Homology between the large plasmids of 15 pathogenic Agrobacterium strains isolated from various parts of the world has been measured and was found to vary over a wide range, from 3 to 100%. Two genetically distinct groups of plasmids can be identified: one closely related to the plasmid of A. tumefaciens A6, an octopine-utilizing strain, and the other closely related to the plasmid of A. tumefaciens C-58, a nopaline-utilizing strain. The plasmids of four Agrobacterium strains do not belong to either group. One of these four strains utilizes octopine, one utilizes nopaline, and two utilize neither. Three strains contained two large plasmids. In one of these strains, the two plasmids were not homologous to one another. Chromosomal homologies for the Agrobacterium strains surveyed also vary over a wide range, but do not correlate with plasmid homologies. Neither do plasmid homologies correlate with any numerical classification scheme. The significance of these plasmid homology studies for crown gall tumorigenesis is considered.  (+info)

The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. (37/273)

Phytohormones as well as temporal and spatial regulation of the cell cycle play a key role in plant development. Here, we investigated the function and regulation of an alfalfa (Medicago sativa) A2-type cyclin in three distinct root developmental programs: in primary and secondary root development, nodule development, and nematode-elicited gall formation. Using transgenic plants carrying the Medsa;cycA2;2 promoter-beta-glucuronidase gene fusion, in combination with other techniques, cycA2;2 expression was localized in meristems and proliferating cells in the lateral root and nodule primordia. Rapid induction of cycA2;2 by Nod factors demonstrated that this gene is implicated in cell cycle activation of differentiated cells developing to nodule primordia. Surprisingly, cycA2;2 was repressed in the endoreduplicating, division-arrested cells both during nodule development and formation of giant cells in nematode-induced galls, indicating that CycA2;2 was dispensable for S-phase in endoreduplication cycles. Overexpression of cycA2;2 in transgenic plants corresponded to wild type protein levels and had no apparent phenotype. In contrast, antisense expression of cycA2;2 halted regeneration of somatic embryos, suggesting a role for CycA2;2 in the formation or activity of apical meristems. Expression of cycA2;2 was up-regulated by auxins, as expected from the presence of auxin response elements in the promoter. Moreover, auxin also affected the spatial expression pattern of this cyclin by shifting the cycA2;2 expression from the phloem to the xylem poles.  (+info)

Role of Agrobacterium cell envelope lipopolysaccharide in infection site attachment. (38/273)

Lipopolysaccharide (LPS) isolated from Agrobacterium tumefaciens inhibited tumor induction by virulent bacteria. LPS from site-binding strains was not effective if added to the plant wound shortly after the bacteria, and LPS from avirulent, non-site-binding strains of Agrobacterium was not inhibitory regardless of the order of addition. However, LPS and whole cells of avirulent strains NT1 and IIBNV6, which lack of Agrobacterim virulence plasmid, were inhibitory. Chromosomal deoxyribonucleic acid thus determines specificity of this essential component of the Agrobacterium infection process.  (+info)

Translation start sequences affect the efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes. (39/273)

Agrobacterium tumefaciens oncogenes cause transformed plant cells to overproduce auxin and cytokinin. Two oncogenes encode enzymes that convert tryptophan to indole-3-acetic acid (auxin): iaaM (tryptophan mono-oxygenase) and iaaH (indole-3-acetamide hydrolase). A third oncogene (ipt) encodes AMP isopentenyl transferase, which produces cytokinin (isopentenyl-AMP). Inactivation of ipt and iaaM (or iaaH) abolishes tumorigenesis. Because adequate means do not exist to control crown gall, we created resistant plants by introducing transgenes designed to elicit posttranscriptional gene silencing (PTGS) of iaaM and ipt. Transgenes that elicit silencing trigger sequence-specific destruction of the inducing RNA and messenger RNAs with related sequences. Although PTGS has proven effective against a variety of target genes, we found that a much higher percentage of transgenic lines silenced iaaM than ipt, suggesting that transgene sequences influenced the effectiveness of PTGS. Sequences required for oncogene silencing included a translation start site. A transgene encoding a translatable sense-strand RNA from the 5' end of iaaM silenced the iaaM oncogene, but deletion of the translation start site abolished the ability of the transgene to silence iaaM. Silencing A. tumefaciens T-DNA oncogenes is a new and effective method to produce plants resistant to crown gall disease.  (+info)

HISTAMINE PROTECTION PRODUCED BY PLANT TUMOUR EXTRACTS. THE ACTIVE PRINCIPLE OF TOMATO PLANTS INFECTED WITH GROWN-GALL. (40/273)

Guinea-pigs were protected against the lethal effects of a histamine aerosol by intraperitoneal injection of stable extracts of normal tomato plants and of tomato plants infected with crown-gall tumours. The protection was short-lasting. No difference was observed between the activities of extracts of normal and of infected plants. The active principle of the extracts was isolated, and identified as the steroid alkaloid glycoside, tomatine.  (+info)