Plastid tubules of higher plants are tissue-specific and developmentally regulated. (25/565)

Green fluorescent stroma filled tubules (stromules) emanating from the plastid surface were observed in transgenic plants containing plastid-localized green fluorescent protein (GFP). These transgenic tobacco plants were further investigated by epifluorescence and confocal laser scanning microscopy (CSLM) to identify developmental and/or cell type specific differences in the abundance and appearance of stromules and of plastids. Stromules are rarely seen on chlorophyll-containing plastids in cell types such as trichomes, guard cells or mesophyll cells of leaves. In contrast, they are abundant in tissues that contain chlorophyll-free plastids, such as petal and root. The morphology of plastids in roots and petals is highly dynamic, and plastids are often elongated and irregular. The shapes, size, and position of plastids vary in particular developmental zones of the root. Furthermore, suspension cells of tobacco exhibit stromules on virtually every plastid with two major forms of appearance. The majority of cells show a novel striking 'octopus- or millipede-like' structure with plastid bodies clustered around the nucleus and with long thin stromules of up to at least 40 (micro)m length stretching into distant areas of the cell. The remaining cells have plastid bodies distributed throughout the cell with short stromules. Photobleaching experiments indicated that GFP can flow through stromules and that the technique can be used to distinguish interconnected plastids from independent plastids.  (+info)

Genes expressed in Pinus radiata male cones include homologs to anther-specific and pathogenesis response genes. (26/565)

We describe the isolation and characterization of 13 cDNA clones that are differentially expressed in male cones of Pinus radiata (D. Don). The transcripts of the 13 genes are expressed at different times between meiosis and microspore mitosis, timing that corresponds to a burst in tapetal activity in the developing anthers. In situ hybridization showed that four of the genes are expressed in the tapetum, while a fifth is expressed in tetrads during a brief developmental window. Six of the seven cDNAs identified in database searches have striking similarity to genes expressed in angiosperm anthers. Seven cDNAs are homologs of defense and pathogen response genes. The cDNAs identified are predicted to encode a chalcone-synthase-like protein, a thaumatin-like protein, a serine hydrolase thought to be a putative regulator of programmed cell death, two lipid-transfer proteins, and two homologs of the anther-specific A9 genes from Brassica napus and Arabidopsis. Overall, our results support the hypothesis that many of the reproductive processes in the angiosperms and gymnosperms were inherited from a common ancestor.  (+info)

Cloning of the guanylate kinase homologues AGK-1 and AGK-2 from Arabidopsis thaliana and characterization of AGK-1. (27/565)

Guanylate kinase is an essential enzyme for nucleotide metabolism, phosphorylating GMP to GDP or dGMP to dGDP. The low molecular mass cytosolic forms of guanylate kinase are implicated primarily in the regulation of the supply of guanine nucleotides to cell signalling pathways. The high molecular mass and membrane-associated forms of guanylate kinase homologues, notably found in neuronal tissues, are assigned roles in cell junction organization and transmembrane regulation. Here, we describe the first plant guanylate kinase-encoding genes, AGK1 and AGK2, from Arabidopsis thaliana. The nucleotide sequences of their genomic and cDNA clones predict proteins that carry N-terminal and C-terminal extensions of the guanylate kinase-like domain. The amino acid sequences of this domain share 46-52% identity with guanylate kinases from yeast, Escherichia coli, human, mouse and Caenorhabditis elegans. Arabidopsis guanylate kinases (AGKs) exhibit a high degree of conservation of active site residues and sequence motifs in common with other nucleoside monophosphate kinases, which suggests overall structural similarity of the plant proteins. Although bacterially expressed AGK-1 is enzymatically much less active than yeast guanylate kinase, its kinase domain is shown to complement yeast GUK1 recessive lethal mutations. AGKs are expressed ubiquitously in plant tissues with highest transcriptional activity detected in roots. The identification of AGKs provides new perspectives for understanding the role of guanylate kinases in plant cell signalling pathways.  (+info)

Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. (28/565)

The control of cell proliferation during organogenesis plays an important role in initiation, growth, and acquisition of the intrinsic size of organs in higher plants. To understand the developmental mechanism that controls intrinsic organ size by regulating the number and extent of cell division during organogenesis, we examined the function of the Arabidopsis regulatory gene AINTEGUMENATA (ANT). Previous observations revealed that ANT regulates cell division in integuments during ovule development and is necessary for floral organ growth. Here we show that ANT controls plant organ cell number and organ size throughout shoot development. Loss of ANT function reduces the size of all lateral shoot organs by decreasing cell number. Conversely, gain of ANT function, via ectopic expression of a 35S::ANT transgene, enlarges embryonic and all shoot organs without altering superficial morphology by increasing cell number in both Arabidopsis and tobacco plants. This hyperplasia results from an extended period of cell proliferation and organ growth. Furthermore, cells ectopically expressing ANT in fully differentiated organs exhibit neoplastic activity by producing calli and adventitious roots and shoots. Based on these results, we propose that ANT regulates cell proliferation and organ growth by maintaining the meristematic competence of cells during organogenesis.  (+info)

The N-terminal beta-barrel structure of lipid body lipoxygenase mediates its binding to liposomes and lipid bodies. (29/565)

Phospholipase A2 and a particular isoform of lipoxygenase are synthesized and transferred to lipid bodies during the stage of triacylglycerol mobilization in germinating cucumber seedlings. Lipid body lipoxygenase (LBLOX) is post-translationally transported to lipid bodies without proteolytic modification. Fractionation of homogenates from cucumber cotyledons or transgenic tobacco leaves expressing LBLOX showed that a small but significant amount was detectable in the microsomal fraction. A beta-barrel-forming N-terminal domain in the structure of LBLOX, as deduced from sequence data, was shown to be crucial for selective intracellular transport from the cytosol to lipid bodies. Although a specific signal sequence for targeting protein domains to the lipid bodies could not be established, it was evident that the beta-barrel represents a membrane-binding domain that is functionally comparable with the C2 domains of mammalian phospholipases. The intact beta-barrel of LBLOX was demonstrated to be sufficient to target in vitro a fusion protein of LBLOX beta-barrel with glutathione S-transferase (GST) to lipid bodies. In addition, binding experiments on liposomes using lipoxygenase isoforms, LBLOX deletions and the GST-fusion protein confirmed the role of the beta-barrel as the membrane-targeting domain. In this respect, the cucumber LBLOX differs from cytosolic isoforms in cucumber and from the soybean LOX-1. When the beta-barrel of LBLOX was destroyed by insertion of an additional peptide sequence, its ability to target proteins to membranes was abolished.  (+info)

Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants. (30/565)

When infecting alone, Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) and Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus) cause no or only mild symptoms (slight stunting and purpling), respectively, in the sweet potato (Ipomoea batatas L. ). In the SPFMV-resistant cv. Tanzania, SPFMV is also present at extremely low titers, though plants are systemically infected. However, infection with both viruses results in the development of sweet potato virus disease (SPVD) characterized by severe symptoms in leaves and stunting of the plants. Data from this study showed that SPCSV remains confined to phloem and at a similar or slightly lower titer in the SPVD-affected plants, whereas the amounts of SPFMV RNA and CP antigen increase 600-fold. SPFMV was not confined to phloem, and the movement from the inoculated leaf to the upper leaves occurred at a similar rate, regardless of whether or not the plants were infected with SPCSV. Hence, resistance to SPFMV in cv. Tanzania was not based on restricted virus movement, neither did SPCSV significantly enhance the phloem loading or unloading of SPFMV. It is also noteworthy that SPVD is an unusual synergistic interaction in that the potyvirus component is not the cause of synergism but is the beneficiary. It is hypothesized that SPCSV is able to enhance the multiplication of SPFMV in tissues other than where it occurs itself, perhaps by interfering with systemic phloem-dependent signaling required in a resistance mechanism directed against SPFMV.  (+info)

The Arabidopsis thaliana PIN1At gene encodes a single-domain phosphorylation-dependent peptidyl prolyl cis/trans isomerase. (31/565)

A homologue of the human site-specific prolyl cis/trans isomerase PIN1 was identified in Arabidopsis thaliana. The PIN1At gene encodes a protein of 119 amino acids that is 53% identical with the catalytic domain of the human PIN1 parvulin. Steady-state PIN1At mRNA is found in all plant tissues tested. We show by two-dimensional NMR spectroscopy that the PIN1At is a prolyl cis/trans isomerase with specificity for phosphoserine-proline bonds. PIN1At is the first example of an eukaryotic parvulin without N- or C-terminal extensions. The N-terminal WW domain of 40 amino acids, typical of all the phosphorylation-dependent eukaryotic parvulins, is absent. However, triple-resonance NMR experiments showed that PIN1At contained a hydrophobic helix similar to the alpha1 helix observed in PIN1 that could mediate the protein-protein interactions.  (+info)

Amino acid transporters in plants. (32/565)

Amino acid transporters are essential participants in the resource allocation processes that support plant growth and development. Recent results have identified several new transporters that contribute to a wide array of physiological activities, and detailed molecular analysis has provided fundamental insights into the structure, function and regulation of these integral membrane proteins.  (+info)