Investigating the genetic model for brown stem rot resistance in soybean. (33/1585)

Genetic analyses have indicated that brown stem rot (BSR) resistance in soybean is conferred by dominant alleles at three independent loci, the actions of which may be modified by linked or independent loci. A study was conducted to characterize the inheritance of BSR resistance in PI 567609, a soybean plant introduction from China. Segregating progeny from crosses of PI 567609 with BSR-susceptible and -resistant genotypes were evaluated for response to BSR-causal fungus, Phialophora gregata. Genetic analyses indicated that PI 567609 carries a single gene or cluster of linked genes for brown stem rot resistance, and that this gene (or cluster) is allelic to, or tightly linked to previously identified resistance genes, Rbs1, Rbs2, and Rbs3. Because previous allelism tests indicated that Rbs1, Rbs2, and Rbs3 were unlinked, and molecular mapping studies have indicated that Rbs1, Rbs2, and Rbs3 are linked on molecular linkage group J of soybean, a new model is proposed for BSR resistance. In this model, BSR resistance is controlled through the interaction of alleles at four independent loci, at least two of which are necessary to condition a resistance response. Functional redundancy at three of these loci allows any one of the three to interact with a fourth locus to confer resistance to BSR.  (+info)

Computing factors of safety against wind-induced tree stem damage. (34/1585)

The drag forces, bending moments and stresses acting on stems differing in size and location within the mechanical infrastructure of a large wild cherry (Prunus serotina Ehrh.) tree are estimated and used to calculate the factor of safety against wind-induced mechanical failure based on the mean breaking stress of intact stems and samples of wood drawn from this tree. The drag forces acting on stems are calculated based on stem projected areas and field measurements of wind speed taken within the canopy and along the length of the trunk. The bending moments and stresses resulting from these forces are shown to increase basipetally in a nearly log-log linear fashion toward the base of the tree. The factor of safety, however, varies in a sinusoidal manner such that the most distal stems have the highest factors of safety, whereas stems of intermediate location and portions of the trunk near ground level have equivalent and much lower factors of safety. This pattern of variation is interpreted to indicate that, as a course of normal growth and development, trees similar to the one examined in this study maintain a cadre of stems prone to wind-induced mechanical damage that can reduce the probability of catastrophic tree failure by reducing the drag forces acting on older portions of the tree. Comparisons among real and hypothetical stems with different taper experiencing different vertical wind speed profiles show that geometrically self-similar stems have larger factors of safety than stems tapering according to elastic or stress self-similarity, and that safety factors are less significantly influenced by the 'geometry' of the wind-profile.  (+info)

Seed coat cell turgor in chickpea is independent of changes in plant and pod water potential. (35/1585)

Turgor pressure in cells of the pod wall and the seed coat of chickpea (Cicer arietinum L.) were measured directly with a pressure probe on intact plants under initially dry soil conditions, and after the plants were irrigated. The turgor pressure in cells of the pod wall was initially 0.25 MPa, and began to increase within a few minutes of irrigation. By 2-4 h after irrigation, pod wall cell turgor had increased to 0.97 MPa. This increase in turgor was matched closely by increases in the total water potential of both the pod and the stem, as measured by a pressure chamber. However, turgor pressure in cells of the seed coat was relatively low (0.10 MPa) and was essentially unchanged up to 24 h after irrigation (0.13 MPa). These data demonstrate that water exchange is relatively efficient throughout most of the plant body, but not between the pod and the seed. Since both the pod and the seed coat are vascularized tissues of maternal origin, this indicates that at least for chickpea, isolation of the water relations of the embryo from the maternal plant does not depend on the absence of vascular or symplastic connections between the embryo and the maternal plant.  (+info)

The influence of secondary senescence processes within the culm of a pseudoviviparous grass (Poa alpina var. vivipara L.) on the supply of water to propagules. (36/1585)

An anatomical investigation of the culm of pseudoviviparous alpine meadow grass (Poa alpina var. vivipara L.) revealed that transpiration flow, as delimited by Lucifer Yellow tracer dye, was maintained despite advanced senescence (as evidenced by loss of chlorophyll and chloroplasts), with leafy spikelets driving transpiration flow. Transpiration flow was not hindered by cavitation or tylosis in older culms, the low frequencies of these senescence processes being bypassed via nodal plexi. Despite this, water content of plantlets declined over time and water stress became apparent, suggesting that water supply via the determinate culm was not sufficient for the increasing transpirational demand of indeterminate plantlets. The implications of declining water content on the biomechanical properties of the culm, and concomitant limitations on the pseudoviviparous reproductive strategy, are discussed. Nomenclature of grass follows Hubbard.  (+info)

Radial distribution pattern of pectin methylesterases across the cambial region of hybrid aspen at activity and dormancy. (37/1585)

Biochemical microanalysis combined with tangential cryosectioning was used to visualize the distribution of pectin methylesterases (PMEs) across the cambial region in active and dormant hybrid aspen (Populus tremula L. x Populus tremuloides Michx). These novel techniques allowed us to relate activity and isoforms of PMEs to specific tissues and developmental stages of the stem to get more information on the physiological function of PMEs in cambial growth. Isoelectrofocusing analysis revealed numerous isoforms that were differentially distributed according to the tissue-type and to the cambial stage. A neutral isoform was found to be distributed ubiquitously across the stem of both active and dormant trees, which suggests that it is a housekeeping isoform involved in the maintenance of the cell wall integrity throughout the stem. In addition, two distinct isoforms having different isoelectric points were found to be related to the differentiation of cambial derivatives. A basic isoform appears to be a physiological marker of the dormant stage involved in the cessation of meristematic radial growth, whereas an acidic isoform is functionally related to the immediate expansion of the cambial daughter cells that occurs bilaterally on each side of the cambium at the active stage.  (+info)

Regulation of SUP expression identifies multiple regulators involved in arabidopsis floral meristem development. (38/1585)

During the course of flower development, floral homeotic genes are expressed in defined concentric regions of floral meristems called whorls. The SUPERMAN (SUP, also called FLO10) gene, which encodes a C2H2-type zinc finger protein, is involved in maintenance of the stamen/carpel whorl boundary (the boundary between whorl 3 and whorl 4) in Arabidopsis. Here, we show that the regulation of SUP expression in floral meristems is complex, consisting of two distinct phases, initiation and maintenance. The floral meristem identity gene LEAFY (LFY) plays a role in the initiation phase through at least two pathways, which differ from each other in the involvement of two homeotic genes, APETALA3 (AP3) and PISTILLATA (PI). AP3, PI, and another homeotic gene, AGAMOUS (AG), are further required for SUP expression in the later maintenance phase. Aside from these genes, there are other as yet unidentified genes that control both the temporal and spatial patterns of SUP expression in whorl 3 floral meristems. SUP appears to act transiently, probably functioning to trigger a genetic circuit that creates the correct position of the whorl 3/whorl 4 boundary.  (+info)

CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. (39/1585)

The Saccharomyces cerevisiae strain WYT, deficient in the YAP1 transcription factor, was used in a molecular screen to identify genes from Arabidopsis thaliana that could overcome the oxidative stress-sensitive phenotype of these yeast cells. A cDNA named CEO1 increased the tolerance to oxidative damage caused by tert-butylhydroperoxide of both the Yap1(-) mutant and the wild-type yeast. Additionally, in Yap1(-) yeast, CEO1 also induced cross-tolerance to oxidative damage caused by hydrogen peroxide and diamide. CEO1 was assigned as being part of a small gene family that, until now, is exclusively restricted to plants. In Arabidopsis, CEO1 was produced in all organs, especially in roots and stems. By using the yeast two-hybrid system, proteins that specifically interact with CEO1 in yeast were identified, and putative DNA-binding proteins were consistently recovered.  (+info)

Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. (40/1585)

Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) has recently been shown to participate in lignin biosynthesis in herbacious tobacco plants. Here, we demonstrate that CCoAOMT is essential in lignin biosynthesis in woody poplar (Populus tremula x Populus alba) plants. In poplar stems, CCoAOMT was found to be expressed in all lignifying cells including vessel elements and fibers as well as in xylem ray parenchyma cells. Repression of CCoAOMT expression by the antisense approach in transgenic poplar plants caused a significant decrease in total lignin content as detected by both Klason lignin assay and Fourier-transform infrared spectroscopy. The reduction in lignin content was the result of a decrease in both guaiacyl and syringyl lignins as determined by in-source pyrolysis mass spectrometry. Fourier-transform infrared spectroscopy indicated that the reduction in lignin content resulted in a less condensed and less cross-linked lignin structure in wood. Repression of CCoAOMT expression also led to coloration of wood and an elevation of wall-bound p-hydroxybenzoic acid. Taken together, these results indicate that CCoAOMT plays a dominant role in the methylation of the 3-hydroxyl group of caffeoyl CoA, and the CCoAOMT-mediated methylation reaction is essential to channel substrates for 5-methoxylation of hydroxycinnamates. They also suggest that antisense repression of CCoAOMT is an efficient means for genetic engineering of trees with low lignin content.  (+info)