The jasmonate-induced 60 kDa protein of barley exhibits N-glycosidase activity in vivo. (49/9955)

Upon jasmonate treatment barley leaf segments express a putative ribosome-inactivating protein (JIP60). The influence of this protein on translation in planta has been analysed by using barley plants and tobacco plants transformed with a barley cDNA encoding JIP60. In both plant systems JIP60 exhibited N-glycosidase activity in vivo. The depurination of the 25S rRNA of tobacco and barley ribosomes led to accumulation of translationally inactive polysomes.  (+info)

Characterization of elicitin-like phospholipases isolated from Phytophthora capsici culture filtrate. (50/9955)

The phytopathogenic oomycete Phytophthora capsici secretes in culture a phospholipase activity. Two enzyme isoforms exhibiting a high phospholipase B activity were isolated by chromatography and electrophoresis. They differ in their apparent molar masses (22 and 32 kDa). Both proteins are glycosylated and share the same N-terminal amino acid sequence up to the 39th residue with a high homology with capsicein, the P. capsici elicitin. Although devoid of phospholipase activity, capsicein was shown by circular dichroism to specifically interact with negatively charged phospholipids, suggesting that the membrane lipids could be a potential target for elicitins.  (+info)

Gnarley1 is a dominant mutation in the knox4 homeobox gene affecting cell shape and identity. (51/9955)

Maize leaves have a stereotypical pattern of cell types organized into discrete domains. These domains are altered by mutations in knotted1 (kn1) and knox (for kn1-like homeobox) genes. Gnarley (Gn1) is a dominant maize mutant that exhibits many of the phenotypic characteristics of the kn1 family of mutants. Gn1 is unique because it changes parameters of cell growth in the basal-most region of the leaf, the sheath, resulting in dramatically altered sheath morphology. The strongly expressive allele Gn1-R also gives rise to a floral phenotype in which ectopic carpels form. Introgression studies showed that the severity of the Gn1-conferred phenotype is strongly influenced by genetic background. Gn1 maps to knox4, and knox4 is ectopically expressed in plants with the Gn1-conferred phenotype. Immunolocalization experiments showed that the KNOX protein accumulates at the base of Gn1 leaves in a pattern that is spatially and temporally correlated with appearance of the mutant phenotype. We further demonstrate that Gn1 is knox4 by correlating loss of the mutant phenotype with insertion of a Mutator transposon into knox4.  (+info)

Host-specific cell-to-cell and long-distance movements of cucumber mosaic virus are facilitated by the movement protein of groundnut rosette virus. (52/9955)

The cucumovirus, cucumber mosaic virus (CMV), requires both the 3a movement protein (MP) and the capsid protein (CP) for cell-to-cell movement. Replacement of the MP of CMV with the MP of the umbravirus, groundnut rosette virus (GRV), which does not encode a CP, resulted in a hybrid virus, CMV(ORF4), which could move cell to cell in Nicotiana tabacum and long distance in N. benthamiana. After replacement of the CMV CP in CMV(ORF4) with the gene encoding the green fluorescent protein (GFP), the hybrid virus, CMV(ORF4.GFP), expressing both the GRV MP and the GFP, could move cell to cell but not systemically in either Nicotiana species. Immunoelectron microscopic analysis of cells infected by the hybrid viruses showed different cellular barriers in the vasculature preventing long-distance movement of CMV(ORF4) in N. tabacum and CMV(ORF4.GFP) in N. benthamiana. Thus the GRV MP, which shows limited sequence similarity to the CMV MP, was able to support CP-independent cell-to-cell movement of the hybrid virus, but CP was still required for long-distance movement and entry of particular vascular cells required functions encoded by different proteins.  (+info)

Subcellular localization of the HSP70-homolog encoded by beet yellows closterovirus. (53/9955)

Closteroviridae is the only viral family coding for a homolog of HSP70 (HSP70h). Polyclonal antiserum to recombinant beet yellows closterovirus (BYV) HSP70h was generated and used for immunogold labeling of the leaf samples derived from the infected Nicotiana benthamiana plants. Ultrastructural analysis revealed the preferential accumulation of BYV in phloem, although occasional infection of the leaf mesophyll cells was also observed. The strongest HSP70h-specific labeling was associated with virion aggregates and vesicles harboring scattered virions. HSP70h was also observed in close proximity of plasmodesmata and inside the plasmodesmatal channels. The possible role of the BYV HSP70h in RNA encapsidation was tested in tobacco protoplasts. A BYV mutant possessing an inactivated HSP70h gene exhibited no detectable encapsidation defects. Collectively, the obtained results suggested that closteroviral HSP70h escorts the virions to their destinations inside the infected cells and possibly participates in the intercellular translocation of BYV.  (+info)

Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L. (54/9955)

This study reveals by in vivo deuterium labeling that in higher plants chlorophyll (Chl) b is converted to Chl a before degradation. For this purpose, de-greening of excised green primary leaves of barley (Hordeum vulgare) was induced by permanent darkness in the presence of heavy water (80 atom % (2)H). The resulting Chl a catabolite in the plant extract was subjected to chemical degradation by chromic acid. 3-(2-Hydroxyethyl)-4-methyl-maleimide, the key fragment that originates from the Chl catabolite, was isolated. High resolution (1)H-, (2)H-NMR and mass spectroscopy unequivocally demonstrates that a fraction of this maleimide fragment consists of a mono-deuterated methyl group. These results suggest that Chl b is converted into Chl a before degradation. Quantification proves that the initial ratio of Chl a:Chl b in the green plant is preserved to about 60-70% in the catabolite composition isolated from yellowing leaves. The incorporation of only one deuterium atom indicates the involvement of two distinguishable redox enzymes during the conversion.  (+info)

Isolation of additional bacteriophages with genomes of segmented double-stranded RNA. (55/9955)

Eight different bacteriophages were isolated from leaves of Pisum sativum, Phaseolus vulgaris, Lycopersicon esculentum, Daucus carota sativum, Raphanus sativum, and Ocimum basilicum. All contain three segments of double-stranded RNA and have genomic-segment sizes that are similar but not identical to those of previously described bacteriophage phi6. All appear to have lipid-containing membranes. The base sequences of some of the viruses are very similar but not identical to those of phi6. Three of the viruses have little or no base sequence identity to phi6. Two of the viruses, phi8 and phi12, contain proteins with a size distribution very different from that of phi6 and do not package genomic segments of phi6. Whereas phi6 attaches to host cells by means of a pilus, several of the new isolates attach directly to the outer membrane. Although the normal hosts of these viruses seem to be pseudomonads, those viruses that attach directly to the outer membrane can establish carrier states in Escherichia coli or Salmonella typhimurium. One of the isolates, phi8, can form plaques on heptoseless strains of S. typhimurium.  (+info)

An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. (56/9955)

A Gram-positive, anaerobic, moderate thermophile, strain Wv6T, capable of reducing indigo dye, was isolated from a fermenting woad vat prepared essentially as in medieval Europe. Strain Wv6T formed rod-shaped cells, which occurred singly, in pairs or in chains and produced terminal oval endospores. Strain Wv6T was saccharolytic. Growth occurred at pH 5.9-9.9 (initial pH) with an optimum at 50 degrees C of pH 7.2 +/- 0.2 (constant pH). At pH 7.8, the temperature range for growth was 30-55 degrees C with the optimum at 49-52 degrees C. Comparative 16S rRNA gene sequence analysis demonstrated that the bacterium represents a hitherto unknown subline within rRNA cluster I Clostridium. Based on the results of the phylogenetic analysis and phenotypic criteria, it is proposed that the unknown moderate thermophile should be classified as Clostridium isatidis sp. nov., a new species of the genus Clostridium. The type strain of Clostridium isatidis is strain Wv6T (= NCFB 3071T).  (+info)