Admission risk assessment by cardiac troponin T in unstable coronary artery disease: additional prognostic information from continuous ST segment monitoring. TRIM study group. Thrombin Inhibition in Myocardial Ischemia. (73/5317)

OBJECTIVES: We investigated whether the addition of 24 h of continuous vectorcardiography ST segment monitoring (cVST) for an early (within 24 h of the latest episode of angina) determination of cardiac troponin T (cTnT) could provide additional prognostic information in patients with unstable coronary artery disease (UCAD), i.e., unstable angina and non-Q wave myocardial infarction. BACKGROUND: Determination of cTnT at admission and cVST are individually reported to be valuable techniques for the risk assessment of patients with UCAD. METHODS: Two hundred and thirty-two patients suspected of UCAD were studied. Patients were followed for 30 days, and the occurrence of cardiac death or acute myocardial infarction (AMI) were registered. RESULTS: One ST segment episode or more (relative risk [RR] 7.43, p = 0.012), a cTnT level > or = 0.20 microg/liter (RR 3.85, p = 0.036) or prestudy medication with calcium antagonists (RR 3.31, p = 0.041) were found to carry independent prognostic information after multivariate analysis of potential risk variables. By combining a cTnT determination and subsequent cVST for 24 h, subgroups of patients at high (25.8%) (n = 31), intermediate (3.1%) (n = 65) and low risk (1.7%) (n = 117) of death or AMI could be identified. CONCLUSIONS: Twenty-four hours of cVST provides additional prognostic information to that of an early cTnT determination in patients suspected of having UCAD. The combination of biochemical and electrocardiographic methods provides powerful and accurate risk stratification in UCAD.  (+info)

Effects of verapamil, zatebradine, and E-4031 on the pacemaker location and rate in response to sympathetic stimulation in dog hearts. (74/5317)

To investigate whether slow inward Ca2+ current (ICa), hyperpolarization-activated inward current (If), and a rapid type of delayed rectifier K+ current (IKr) similarly act on the pacemaker location, sinoatrial node region, and subsidiary superior and inferior pacemaker regions, we studied the effects of verapamil, zatebradine, and E-4031 on the atrial rate and the 3-ms earliest activation region (EAR) determined from the isochronal activation sequence map in the autonomically decentralized heart of the anesthetized dog. Three blockers decreased atrial rate similarly. Verapamil shifted the EAR from the SA node region to the inferior pacemaker region. The EAR induced by zatebradine was variable, but the EAR induced by E-4031 tended to shift to the inferior pacemaker region. Sympathetic nerve stimulation increased atrial rate and shifted the EAR to the superior pacemaker region. Verapamil attenuated the increased atrial rate by 28%, and it shifted the EAR to the lower pacemaker regions consistently. Zatebradine also attenuated the increased rate by 53% and shifted the EAR from the anterior to the posterior-superior right atrium. On the other hand, E-4031 affected neither the rate nor the EAR in response to sympathetic stimulation. These results suggest that ICa, If, and IKr inhibitors differentially influence the pacemaker activity among three pacemaker regions when sympathetic tone is absent or present and that the role of ICa, If, and IKr of the pacemaker cells distributed in the atrial pacemaker complex is different in the dog heart in situ.  (+info)

Factors that enhance ethanol inhibition of N-methyl-D-aspartate receptors in cerebellar granule cells. (75/5317)

The objective of this study was to identify factors that influence ethanol (EtOH) inhibition of the N-methyl-D-aspartate receptor (NMDAR) in primary cultured cerebellar granule cells. Several factors contributing to the inhibitory effects of EtOH on NMDAR function were assessed using both whole-cell and perforated patch-clamp recordings. The NMDAR subunit composition was examined by Western blot analysis using NR2 subunit-specific antibodies and pharmacological manipulation with the NR2B-specific antagonist infenprodil. Western blot analysis indicated that NMDAR subunit composition changed from a combination of NR2A and NR2B containing NMDARs to primarily NR2A with increasing days in vitro (DIV). Although the NR2B subunit was detectable until 21 DIV, there was a significant decrease in ifenprodil sensitivity after 7 DIV. EtOH sensitivity did not change with an increasing DIV. A high concentration of glycine reversed EtOH inhibition of steady-state, but not peak, NMDA-induced current during whole-cell recordings. Significant glycine reversal of effects of a low concentration of EtOH on peak current was observed under perforated patch-clamp conditions. A 30-s EtOH pretreatment significantly enhanced EtOH inhibition of NMDA-induced peak current. Collectively, these results indicate that EtOH sensitivity of the NMDAR in primary cultured cerebellar granule cells is not related to subunit composition nor ifenprodil sensitivity, involves a kinetic interaction with glycine, and can be enhanced by a slowly developing transduction mechanism that occurs within tens of seconds.  (+info)

Zinc and ifenprodil allosterically inhibit two separate polyamine-sensitive sites at N-methyl-D-aspartate receptor complex. (76/5317)

In this study, we investigated the hypothesis that inhibition of the N-methyl-D-aspartate (NMDA) receptor complex by zinc involves a polyamine-sensitive regulatory site. We found that the specific binding of the open channel ligand [3H]MK-801 to rat hippocampal membranes 1) was inhibited by low concentrations of Zn2+ (IC50 = 5.5 microM) by 65%. 2) This high-affinity component of inhibition was reversed by the polyamine spermine to an extent that could be reconciled with competitive interaction between Zn2+ and spermine. 3) Partial inhibition by Zn2+ was additive with partial inhibition by ifenprodil, an inhibitor of the NMDA receptor complex supposed to act at a polyamine-sensitive regulatory site, and 4) in membranes prepared from several other brain regions, inhibition of [3H]MK-801 binding by Zn2+ and by ifenprodil was either less than additive, or superadditive. Our observation that ifenprodil, at concentrations saturating its high-affinity component of inhibition, prevented spermine from reversing the inhibition by Zn2+ indicates that spermine did not increase [3H]MK-801 binding by competition with Zn2+ but rather via another polyamine regulatory site not sensitive to zinc but sensitive to ifenprodil. We conclude that Zn2+ reduces channel opening of the NMDA receptor complex by allosteric inhibition of a polyamine-sensitive regulatory site different from that inhibited by ifenprodil and that these two allosteric sites influence each other in a manner dependent on the brain region investigated. The different proportions of zinc/ifenprodil inhibition in different regions could reflect different percentages of various NMDA receptor subtypes.  (+info)

Pharmacokinetics and pharmacodynamics of Ro 44-3888 after single ascending oral doses of sibrafiban, an oral platelet aggregation inhibitor, in healthy male volunteers. (77/5317)

AIMS: This study constituted the first administration of the oral platelet inhibitor, sibrafiban, to humans. The aim was to investigate the pharmacokinetics and pharmacodynamics of Ro 44-3888, the active principle of sibrafiban, after single ascending oral doses of sibrafiban. Particular emphasis was placed on intersubject variability of the pharmacokinetic and pharmacodynamic parameters of Ro 44-3888. METHODS: The study consisted of three parts. Part I was an open ascending-dose study to determine target effect ranges of sibrafiban. Part II, a double-blind, placebo-controlled, parallel-group study, addressed the intersubject variability of pharmacokinetic and pharmacodynamic parameters of the active principle at a sibrafiban dose achieving an intermediate effect. Part III was a double-blind, placebo-controlled, ascending-dose design covering the complete plasma concentration vs pharmacodynamic response curve of sibrafiban. RESULTS: At sibrafiban doses between 5 mg and 12 mg, the pharmacokinetics of free Ro 44-3888 in plasma were linear whereas those of total Ro 44-3888 were non-linear because of the saturable binding to the glycoprotein IIb-IIIa receptor. Saturation of the GP IIb-IIIa receptor was reached at plasma concentrations of 15.9 ng ml-1. At sibrafiban doses up to 2 mg, ADP-induced platelet aggregation was inhibited by 50%, whereas the inhibition of TRAP-induced platelet aggregation was about 20-30%. At the higher doses, ADP-induced platelet aggregation was almost completely inhibited while a clear dose-response could be observed with TRAP-induced inhibition of platelet aggregation at sibrafiban doses of 5 to 12 mg. Ivy bleeding time increased very steeply with dose with a significant prolongation observed at doses of 5 to 7 mg of sibrafiban (5-7 min, >30 min in one case). At a sibrafiban dose of 12 mg, the stopping criterion for dose escalation (prolongation of the Ivy bleeding time >30 min in three out of four subjects per dose group) was reached. The interindividual coefficients of variation of the integrated pharmacokinetic and pharmacodynamic parameters (AUC and AUE) were below 20%, thus lying well within the pre-set level of acceptance. CONCLUSIONS: With a low intersubject variability of its pharmacokinetic and pharmacodynamic parameters, linear pharmacokinetics and pharmacodynamic effects closely related to its plasma concentrations, Ro 44-3888 has good pharmacological prerequisites for a well controllable therapy of secondary prevention of arterial thrombosis in patients with acute coronary syndrome.  (+info)

A regulatory domain (R1-R2) in the amino terminus of the N-methyl-D-aspartate receptor: effects of spermine, protons, and ifenprodil, and structural similarity to bacterial leucine/isoleucine/valine binding protein. (78/5317)

There are complex interactions between spermine, protons, and ifenprodil at N-methyl-D-aspartate receptors. Spermine stimulation may involve relief of proton inhibition, whereas ifenprodil inhibition may involve an increase in proton inhibition. We studied mutations at acidic residues in the NR1 subunit using voltage-clamp recording of NR1/NR2B receptors expressed in Xenopus oocytes. Mutations at residues near the site of the exon-5 insert, including E181 and E185, reduced spermine stimulation and proton inhibition. Mutation NR1(D130N) reduced sensitivity to ifenprodil by more than 500-fold, but had little effect on sensitivity to spermine and pH. Mutations at six other residues in this region of the NR1 subunit reduced the potency and, in some cases, the maximum effect of ifenprodil. These mutants did not affect sensitivity to pH, glutamate, glycine, or other hallmark properties of N-methyl-D-aspartate channels such as Mg2+ block and Ba2+ permeability. Residues in this region presumably form part of the ifenprodil-binding site. To model this region of NR1 we compared the predicted secondary structure of NR1 (residues 19-400) with the known structures of 1,400 proteins. This region of NR1 is most similar to bacterial leucine/isoleucine/valine binding protein, a globular amino acid binding protein containing two lobes, similar to the downstream S1-S2 region of glutamate receptors. We propose that the tertiary structure of NR1(22-375) is similar to leucine/isoleucine/valine binding protein, containing two "regulatory" domains, which we term R1 and R2. This region, which contains the binding sites for spermine and ifenprodil, may influence the downstream S1 and S2 domains that constitute the glycine binding pocket.  (+info)

Cloning and characterization of the genes encoding a cytochrome P450 (PipA) involved in piperidine and pyrrolidine utilization and its regulatory protein (PipR) in Mycobacterium smegmatis mc2155. (79/5317)

Transposon mutagenesis of Mycobacterium smegmatis mc2155 enabled the isolation of a mutant strain (called LGM1) altered in the regulation of piperidine and pyrrolidine utilization. The complete nucleotide sequence of the gene inactivated in mutant LGM1 was determined from the wild-type strain. This gene (pipR) encoded a member of the GntR family of bacterial regulatory proteins. An insertion element (IS1096), previously described for M. smegmatis, was detected downstream of the gene pipR. Three additional open reading frames were found downstream of IS1096. The first open reading frame (pipA) appeared to encode a protein identified as a cytochrome P450 enzyme. This gene is the first member of a new family, CYP151. By a gene replacement experiment, it was demonstrated that the cytochrome P450 pipA gene is required for piperidine and pyrrolidine utilization in M. smegmatis mc2155. Genes homologous to pipA were detected by hybridization in several, previously isolated, morpholine-degrading mycobacterial strains. A gene encoding a putative [3Fe-4S] ferredoxin (orf1) and a truncated gene encoding a putative glutamine synthetase (orf2') were found downstream of pipA.  (+info)

Antimalarial activities of the 4-quinolinemethanols WR-184,806 and WR-226,253. (80/5317)

WR-184,806 and WR-226,253, two 4-quinolinemethanols structurally similar to WR-142,490 (mefloquine), have been studied in depth in owl monkeys infected with various drug-resistant and drug-susceptible strains of Plasmodium falciparum and P. vivax in an effort to provide support and guidance for projected evaluations in human volunteers. The results of these studies, confirmatory of preliminary appraisals, showed that WR-184,806 was approximately one-third as active as WR-142,490 against infections with a multidrug-resistant strain of P. falciparum, whereas WR-226,253 was twice as active. Additionally, the current studies showed: (i) that both WR-184,806 and WR-226,253 were significantly more active against infections with blood schizonts of P. vivax than against those of P. falciparum; (ii) that their activities against established infections with either Plasmodium species were functions of the total doses delivered, single doses being as effective as three or seven fractional doses given on successive days; (iii) that WR-184,806 could be administered intravenously as the phosphate salt and was curative via this route in single doses; and (iv) that based on comparative curative doses, WR-184,806 was slightly more active and WR-226,253 was seven times more active against infections with a multidrug-resistant strain of P. falciparum than was chloroquine against infections with a 4-aminoquinoline-susceptible strain.  (+info)