Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. (33/756)

Leber congenital amaurosis (LCA, MIM 204000) accounts for at least 5% of all inherited retinal disease and is the most severe inherited retinopathy with the earliest age of onset. Individuals affected with LCA are diagnosed at birth or in the first few months of life with severely impaired vision or blindness, nystagmus and an abnormal or flat electroretinogram (ERG). Mutations in GUCY2D (ref. 3), RPE65 (ref. 4) and CRX (ref. 5) are known to cause LCA, but one study identified disease-causing GUCY2D mutations in only 8 of 15 families whose LCA locus maps to 17p13.1 (ref. 3), suggesting another LCA locus might be located on 17p13.1. Confirming this prediction, the LCA in one Pakistani family mapped to 17p13.1, between D17S849 and D17S960-a region that excludes GUCY2D. The LCA in this family has been designated LCA4 (ref. 6). We describe here a new photoreceptor/pineal-expressed gene, AIPL1 (encoding aryl-hydrocarbon interacting protein-like 1), that maps within the LCA4 candidate region and whose protein contains three tetratricopeptide (TPR) motifs, consistent with nuclear transport or chaperone activity. A homozygous nonsense mutation at codon 278 is present in all affected members of the original LCA4 family. AIPL1 mutations may cause approximately 20% of recessive LCA, as disease-causing mutations were identified in 3 of 14 LCA families not tested previously for linkage.  (+info)

A new concept for melatonin deficit: on pineal calcification and melatonin excretion. (34/756)

Even though exogenous melatonin has proven to influence sleep and circadian parameters, low endogenous melatonin is not related to sleep disturbances, nor does it predict response to melatonin replacement therapy. In this manuscript, we present a new concept towards a definition of a melatonin deficit. The purpose of the study was to introduce a marker for an intra-individual decrease in melatonin production. Therefore, we developed a method to quantify the degree of pineal calcification (DOC) using cranial computed tomography. Combining pineal DOC with the organs's size, we estimated the uncalcified pineal gland volume. This estimation was positively and significantly associated with 6-sulfatoxymelatonin (aMT6s), collected over 24 hours in urine, in 26 subjects. Data yielded evidence that the decline in aMT6s excretion with age can be sufficiently explained by an increased pineal calcification. These results suggest that DOC might be useful as an indicator of an intra-individual, decreased capability of the pineal gland to produce melatonin. DOC might prove to be a response-marker for melatonin replacement therapy and a vulnerability marker of the circadian timing system.  (+info)

Role of circadian activation of mitogen-activated protein kinase in chick pineal clock oscillation. (35/756)

A circadian pacemaker generates a rhythm with a period of approximately 24 hr even in the absence of environmental time cues. Several photosensitive neuronal tissues such as the retina and pineal gland contain the autonomous circadian pacemaker together with the photic-input pathway responsible for entrainment of the pacemaker to the daily light/dark cycle. We show here that, in constant darkness, chick pineal mitogen-activated protein kinase (MAPK) exhibited an in vivo circadian rhythm in tyrosine phosphorylation and in enzymatic activity with a peak during subjective night. Phosphorylated and hence activated MAPK was rapidly dephosphorylated after light illumination during the nighttime when light induces a phase-shift of the pacemaker. The circadian rhythmicity in MAPK phosphorylation was also observed in the cultured pineal gland, and importantly, MAPK kinase inhibitor treatment during subjective night not only shifted the time-of-peak of MAPK phosphorylation but also induced a remarkable phase-delay of the circadian pacemaker. These results indicate an important role of MAPK for time keeping in circadian clock systems.  (+info)

Antagonistic actions of analogs related to growth hormone-releasing hormone (GHRH) on receptors for GHRH and vasoactive intestinal peptide on rat pituitary and pineal cells in vitro. (36/756)

Peptide analogs of growth hormone-releasing hormone (GHRH) can potentially interact with vasoactive intestinal peptide (VIP) receptors (VPAC(1)-R and VPAC(2)-R) because of the structural similarities of these two hormones and their receptors. We synthesized four new analogs related to GHRH (JV-1-50, JV-1-51, JV-1-52, and JV-1-53) with decreased GHRH antagonistic activity and increased VIP antagonistic potency. To characterize various peptide analogs for their antagonistic activity on receptors for GHRH and VIP, we developed assay systems based on superfusion of rat pituitary and pineal cells. Receptor-binding affinities of peptides to the membranes of these cells were also evaluated by radioligand competition assays. Previously reported GHRH antagonists JV-1-36, JV-1-38, and JV-1-42 proved to be selective for GHRH receptors, because they did not influence VIP-stimulated VPAC(2) receptor-dependent prolactin release from pituitary cells or VPAC(1) receptor-dependent cAMP efflux from pinealocytes but strongly inhibited GHRH-stimulated growth hormone (GH) release. Analogs JV-1-50, JV-1-51, and JV-1-52 showed various degrees of VPAC(1)-R and VPAC(2)-R antagonistic potency, although also preserving a substantial GHRH antagonistic effect. Analog JV-1-53 proved to be a highly potent VPAC(1) and VPAC(2) receptor antagonist, devoid of inhibitory effects on GHRH-evoked GH release. The antagonistic activity of these peptide analogs on processes mediated by receptors for GHRH and VIP was consistent with the binding affinity. The analogs with antagonistic effects on different types of receptors expressed on tumor cells could be utilized for the development of new approaches to treatment of various human cancers.  (+info)

Cyclophosphamide and carboplatin and selective consolidation in advanced seminoma. (37/756)

This prospective Phase II study assesses the clinical efficacy and complications of a treatment regimen of combination chemotherapy with cyclophosphamide and carboplatin and selective consolidation in advanced seminoma. Of 46 patients who entered the study between December 1992 and October 1998, 46 were evaluable. Thirty-two achieved a complete remission (70%; 95% confidence interval, 56-83%) after chemotherapy alone. Fourteen achieved a complete remission (30%; 95% confidence interval, 18-46%) after chemotherapy plus consolidation. Forty-three of the 46 patients (93%; 95% confidence interval, 82-97%) remained in remission after a median follow-up period of 27.4 months. No patient experienced nephrotoxic, neurotoxic, or ototoxic effects or hemorrhagic cystitis. No patient had neutropenic fever requiring hospitalization. Thirteen % required platelet transfusions, and 9% required transfusions of packed RBCs. For patients with advanced seminoma, treatment with cyclophosphamide and carboplatin and selective consolidation is safe and effective.  (+info)

A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. (38/756)

We have isolated a novel opsin from the pineal complex of Atlantic salmon (Salmo salar) and from the brain of the puffer fish (Fugu rubripes). These extra-retinal opsins share approximately 74% identity at the nucleotide and amino acid level with rod-opsins from the retina of these species. By PCR, we have determined that the novel rod-like opsin is not expressed in the salmon retina, and the retinal rod-opsin is not expressed in the salmon pineal. Phylogenetic analysis suggests that the rod-like opsins arose from a gene duplication event approximately 205 million years ago, a time of considerable adaptive radiation of the bony fish. In view of the large differences in the coding sequences of the pineal/brain rod-like opsins, their extra-retinal sites of expression, and phylogenetic position we have termed these novel opsins 'extra-retinal rod-like opsins' (ERrod-like opsins). We speculate that the differences between retinal rod-opsins and ERrod-like opsins have arisen from their differing photosensory roles and/or genetic drift after the gene duplication event in the Triassic.  (+info)

SPACRCAN, a novel human interphotoreceptor matrix hyaluronan-binding proteoglycan synthesized by photoreceptors and pinealocytes. (39/756)

The interphotoreceptor matrix is a unique extracellular complex occupying the interface between photoreceptors and the retinal pigment epithelium in the fundus of the eye. Because of the putative supportive role in photoreceptor maintenance, it is likely that constituent molecules play key roles in photoreceptor function and may be targets for inherited retinal disease. In this study we identify and characterize SPACRCAN, a novel chondroitin proteoglycan in this matrix. SPACRCAN was cloned from a human retinal cDNA library and the gene localized to chromosome 3q11.2. Analysis of SPACRCAN mRNA and protein revealed that SPACRCAN is expressed exclusively by photoreceptors and pinealocytes. SPACRCAN synthesized by photoreceptors is localized to the interphotoreceptor matrix where it surrounds both rods and cones. The functional protein contains 1160 amino acids with a large central mucin domain, three consensus sites for glycosaminoglycan attachment, two epidermal growth factor-like repeats, a putative hyaluronan-binding motif, and a potential transmembrane domain near the C-terminal. Lectin and Western blotting indicate an M(r) around 400,000 before and 230,000 after chondroitinase ABC digestion. Removal of N- and O-linked oligosaccharides reduces the M(r) to approximately 160,000, suggesting that approximately 60% of the mass of SPACRCAN is carbohydrate. Finally, we demonstrate that SPACRCAN binds hyaluronan and propose that associations between SPACRCAN and hyaluronan may be involved in organization of the insoluble interphotoreceptor matrix, particularly as SPACRCAN is the major proteoglycan present in this matrix.  (+info)

Melatonin secretion from organ-cultured pineal glands of rats: modulation by gonadectomy and gonadotropin-releasing hormone agonist administration. (40/756)

The objective of the study was to evaluate the effect of pretreatments such as gonadectomy in male and female rats, and gonadotropin-releasing hormone agonist (GnRHa) administration in female rats, on levels of secretion of melatonin, using an organ culture of pineal glands. Gonadectomy 2 weeks before the animal was killed increased the amount of melatonin secreted into the medium by the pineal glands of female rats but not of male rats. The increase in in vitro melatonin secretion after ovariectomy in female rats was prevented by estrogen replacement. Ovariectomy 3 and 4 weeks before death also significantly increased the amount of melatonin secretion. Administration of GnRHa 2 weeks before decapitation significantly decreased serum estradiol concentrations and significantly increased melatonin secretion by the pineal glands of female rat. GnRHa administration 3 or 4 weeks before decapitation also significantly decreased serum estradiol concentrations, but did not increase pineal secretion of melatonin. The results indicate that ovariectomy increases melatonin secretion from organ-cultured pineal glands and that this increase is suppressed by estrogen in adult female rats. In contrast, orchiectomy in male rats does not influence in vitro secretion of melatonin. These results suggest that the GnRH-gonadotropin system may participate in the regulation of pineal melatonin secretion in adult female rats.  (+info)