Two-phase response of rat pineal melatonin to lethal whole-body irradiation with gamma rays. (17/756)

Male Wistar rats adapted to artificial light:dark (LD) regimen 12:12 h were whole-body irradiated with a single dose of 9.6 Gy of gamma rays and sham/irradiated in the night in darkness. The rats were examined 60 min, 1, 3 and 5 days after exposure between 22:00 and 01:30 h in the darkness. The results obtained indicate a two-phase reaction of pineal melatonin after the lethal irradiation of rats: the decline of melatonin concentration early after the exposure (at 60 min) with unchanged serotonin N-acetyltransferase (NAT) activity followed by an increase of melatonin synthesis, accompanied by an increase of pineal and serum melatonin on day 5 after the exposure. NAT activity was increased on day 3 after the exposure. Serum corticosterone concentrations in irradiated rats were increased 60 min and 3 days after exposure. With respect to the antioxidant, immunomodulating and stress-diminishing properties of melatonin, we consider the increase in melatonin synthesis during later periods after irradiation as part of adaptation of the organism to overcome radiation stress.  (+info)

Daily rhythm in rat pineal catecholamines. (18/756)

A daily rhythm in the oscillations of pineal dopamine, norepinephrine and epinephrine content was found in male Wistar: Han rats. The acrophases of the oscillations were localized in the first half of the dark period and generally higher values were found in the dark part of the day.  (+info)

Cloning and expression of recombinant human pineal tryptophan hydroxylase in Escherichia coli: purification and characterization of the cloned enzyme. (19/756)

The first step in the biosynthesis of melatonin in the pineal gland is the hydroxylation of tryptophan to 5-hydroxytryptophan. A cDNA of human tryptophan hydroxylase (TPH) was cloned from a library of human pineal gland and expressed in Escherichia coli. This cDNA sequence is identical to the cDNA sequence published from the human carcinoid tissue [1]. This human pineal hydroxylase gene encodes a protein of 444 amino acids and a molecular mass of 51 kDa estimated for the purified enzyme. Tryptophan hydroxylase from human brainstem exhibits high sequence homology (93% identity) with the human pineal hydroxylase. The recombinant tryptophan hydroxylase exists in solution as tetramers. The expressed human pineal tryptophan hydroxylase has a specific activity of 600 nmol/min/mg when measured in the presence of tetrahydrobiopterin and L-tryptophan. The enzyme catalyzes the hydroxylation of tryptophan and phenylalanine at comparable rates. Phosphorylation of the hydroxylase by protein kinase A or calmodulin-dependent kinase II results in the incorporation of 1 mol of phosphate/mol of subunit, but this degree of phosphorylation leads to only a modest (30%) increase in BH(4)-dependent activity when assayed in the presence of 14-3-3. Rapid scanning ultraviolet spectroscopy has revealed the formation of the transient intermediate compound, 4alpha-hydroxytetrahydrobiopterin, during the hydroxylation of either tryptophan or phenylalanine catalyzed by the recombinant pineal TPH.  (+info)

Mechanism-based inhibition of the melatonin rhythm enzyme: pharmacologic exploitation of active site functional plasticity. (20/756)

Serotonin N-acetyltransferase is the enzyme responsible for the diurnal rhythm of melatonin production in the pineal gland of animals and humans. Inhibitors of this enzyme active in cell culture have not been reported previously. The compound N-bromoacetyltryptamine was shown to be a potent inhibitor of this enzyme in vitro and in a pineal cell culture assay (IC(50) approximately 500 nM). The mechanism of inhibition is suggested to involve a serotonin N-acetyltransferase-catalyzed alkylation reaction between N-bromoacetyltryptamine and reduced CoA, resulting in the production of a tight-binding bisubstrate analog inhibitor. This alkyltransferase activity is apparently catalyzed at a functionally distinct site compared with the acetyltransferase activity active site on serotonin N-acetyltransferase. Such active site plasticity is suggested to result from a subtle conformational alteration in the protein. This plasticity allows for an unusual form of mechanism-based inhibition with multiple turnovers, resulting in "molecular fratricide." N-bromoacetyltryptamine should serve as a useful tool for dissecting the role of melatonin in circadian rhythm as well as a potential lead compound for therapeutic use in mood and sleep disorders.  (+info)

Dietary docosahexaenoic acid-enriched phospholipids normalize urinary melatonin excretion in adult (n-3) polyunsaturated fatty acid-deficient rats. (21/756)

Melatonin (MEL) plays an essential role in physiologic functions associated with darkness. We examined the effects of docosahexaenoic acid (DHA)-enriched phospholipids from pig brains (BPL) or hen eggs (EPL), as sources of DHA, on lipid FA composition of pineal membranes and daytime and nighttime concentrations of 6-sulfatoxymelatonin (aMT6) in adult male control and (n-3)-deficient rats fed BPL and EPL diets for 5 wk. In two experiments, at 3 wk of age, rats were divided into subgroups and fed semipurified diets containing either peanut oil [(n-3)-deficient group] or peanut plus rapeseed oil (control group) and two dietary formulas containing either 3.5 g/100 g diet of BPL (Experiment 1) or 5.0 g/100 g diet of EPL (Experiment 2). BPL and EPL diets provided approximately 200 mg of DHA/100 g diet. During the daytime, aMT6 concentrations were not significantly different among groups. Conversely, the (n-3)-deficient rats had significantly lower nighttime aMT6 concentrations than the control rats. BPL and EPL did not affect urinary nighttime aMT6 concentration in the control group, whereas (n-3)-deficient + BPL or EPL groups exhibited significantly higher nighttime aMT6 concentrations than the (n-3)-deficient group (76 and 110%, respectively). The level of DHA was significantly higher in the pineal glands of control rats than in (n-3)-deficient rats. In rats fed EPL and BPL, the level of DHA reached a plateau, between 10 and 11 mg/100 mg total fatty acids in control + BPL or EPL and (n-3)-deficient + BPL or EPL groups. These findings suggest that new DHA-enriched formulas may be used as an efficient alternative source of (n-3) polyunsaturated fatty acids to normalize MEL secretion.  (+info)

Circadian regulation of chick electroretinogram: effects of pinealectomy and exogenous melatonin. (22/756)

Melatonin is an important component of the avian circadian system. This study investigates the effects of pinealectomy (Pin-X) and melatonin implantation (Mel) on electroretinogram (ERG) rhythms in chicks. Feeding rhythms were monitored to obtain a phase reference for ERG recordings. Pin-X and Mel had little or no effect on feeding rhythms. Sham-operated Pin-X and vehicle implantation had no effect on ERG rhythms in the light-dark (LD) cycle or constant darkness (DD). ERG a- and b-wave amplitudes were higher during the day than during the night. The a- and b-wave implicit times were shorter during the day than during the night. a-Wave sensitivity was higher during the night than during the day, whereas b-wave sensitivity was not rhythmic. Pin-X abolished the circadian rhythm of b-wave amplitude and implicit time in DD but had no effect on a-wave rhythmicity. Mel abolished the rhythm of b-wave amplitude and of a- and b-wave implicit time in DD. Neither treatment affected ERG in LD. These results suggest that the circadian system regulates rhythmic visual function in the retina at least partially through Mel. The role played by the pineal gland and Mel may be specific to some physiological modalities (e.g., vision) while not influencing others (e.g., feeding).  (+info)

Genetic variability in plasma melatonin in sheep is due to pineal weight, not to variations in enzyme activities. (23/756)

This study was conducted to determine the origin of the high variability in the mean nocturnal plasma melatonin concentration (MC) in sheep. Two extreme groups of 25 lambs each [low (L) and high (H)] were obtained by calculating their genetic value on the basis of the MC of their parents. The MC of lambs was significantly higher in the H group than in the L group (L: 189.7 +/- 24.4 vs. H: 344.1 +/- 33.0 pg/ml, P < 0.001). Within each group, 13 lambs were slaughtered during the day (D) and 12 lambs during the night (N). Pineal weight was significantly higher in the H group than in the L group (L: 83.5 +/- 6.7 vs. H: 119.1 +/- 9.2 mg, P < 0.01) but did not differ between D and N. The amount of melatonin released in vitro per milligram of pineal gland, the arylalkylamine N-acetyltransferase (AANAT) activity, the AANAT protein content, and the level of AANAT mRNA differed significantly between D and N but not with genetic group. Hydroxyindole O-methyltransferase activity did not differ significantly between D and N or between genetic groups. Therefore, the genetic difference in MC between the two groups of lambs was attributed to a difference in pineal size, not in enzymatic activity of the pinealocytes.  (+info)

Melatonin: an endogenous negative modulator of 12-lipoxygenation in the rat pineal gland. (24/756)

Major biochemical activities of the pineal gland include melatonin biosynthesis and 12-lipoxygenation. In this paper, we provide evidence in vivo that melatonin regulates 12-lipoxygenation via 12-lipoxygenase (LOX) expression. The relationship between these two biochemical activities was established by monitoring levels of endogenous melatonin and a 12-LOX metabolite, 12-hydroxyeicosatetraenoic acid (12-HETE), in the rat pineal gland both during the light-dark cycle and after isoproterenol injection using GC/MS with negative ion chemical ionization. As pineal melatonin production reflected a typical diurnal variation, 12-HETE levels showed an off-phase diurnal pattern in relation to melatonin levels. Intravenous administration of isoproterenol, which has been shown to elevate melatonin production, decreased the 12-HETE level significantly. The reduction of 12-HETE levels during the dark phase and after isoproterenol injection was accompanied by decreases in 12-LOX mRNA and protein levels. Direct administration of melatonin to rats by intravenous injection decreased pineal 12-LOX protein levels significantly, indicating that melatonin plays a role in down-regulating 12-LOX expression. When pineal glands were incubated with exogenous melatonin in culture, time-dependent reduction of 12-LOX protein levels was observed. The melatonin-induced reduction in 12-LOX protein was abolished in the presence of the melatonin receptor antagonist luzindole, establishing further the role of melatonin in this process. Incubation of pineal homogenates with exogenous melatonin partially inhibited 12-LOX activity. Taken together, an inverse relationship exists in the endogenous production of 12-HETE, 12-LOX mRNA and protein with respect to melatonin production in the rat pineal gland. Melatonin decreased both 12-LOX mRNA and protein levels in addition to 12-LOX enzyme activity, indicating that melatonin is an endogenous modulator of pineal 12-lipoxygenation.  (+info)