Kodamaea nitidulidarum, Candida restingae and Kodamaea anthophila, three new related yeast species from ephemeral flowers. (1/1453)

Three new yeast species were discovered during studies of yeasts associated with ephemeral flowers in Brazil, Australia and Hawaii. Their physiological and morphological similarity to Kodamaea (Pichia) ohmeri suggested a possible relationship to that species, which was confirmed by rDNA sequencing. Kodamaea nitidulidarum and Candida restingae were found in cactus flowers and associated nitidulid beetles in sand dune ecosystems (restinga) of South-eastern Brazil. Over 350 strains of Kodamaea anthophila were isolated from Hibiscus and morning glory flowers (Ipomoea spp.) in Australia, and from associated nitidulid beetles and Drosophila hibisci. A single isolate came from a beach morning glory in Hawaii. Expansion of the genus Kodamaea to three species modified the existing definition of the genus only slightly. The type and isotype strains are as follows: K. nitidulidarum strains UFMG96-272T (h+; CBS 8491T) and UFMG96-394I (h-; CBS 8492I); Candida restingae UFMG96-276T (CBS 8493T); K. anthophila strains UWO(PS)95-602.1T (h+; CBS 8494T), UWO(PS)91-893.2I (h-; CBS 8495I) and UWO(PS)95-725.1I (h-; CBS 8496I).  (+info)

Glycosylation of asparagine-28 of recombinant staphylokinase with high-mannose-type oligosaccharides results in a protein with highly attenuated plasminogen activator activity. (2/1453)

The properties of recombinant staphylokinase (SakSTAR) expressed in Pichia pastoris cells have been determined. The single consensus N-linked oligosaccharide linkage site in SakSTAR (at Asn28 of the mature protein) was occupied in approximately 50% of the expressed protein with high-mannose-type oligosaccharides. The majority of these glycans ranged in polymerization state from Man8GlcNAc2 to Man14GlcNAc2, with the predominant species being Man10GlcNAc2 and Man11GlcNAc2. Glycosylated SakSTAR (SakSTARg) did not differ from its aglycosyl form in its aggregation state in solution, its thermal denaturation properties, its ability to form a complex with human plasmin (hPm), the amidolytic properties of the respective SakSTAR-hPm complexes, or its ability to liberate the amino-terminal decapeptide required for formation of a functional SakSTAR-hPm plasminogen activator complex. However, this latter complex with SakSTARg showed a greatly reduced ability to activate human plasminogen (hPg) as compared with the same complex with the aglycosyl form of SakSTAR. We conclude that glycosylation at Asn28 does not affect the structural properties of SakSTAR or its ability to participate in the formation of an active enzymatic complex with hPm, but it is detrimental to the ability of the SakSTAR-hPm complex to serve as a hPg activator. This is likely due to restricted access of hPg to the active site of the SakSTARg-hPm complex.  (+info)

Protection of mice against a lethal influenza virus challenge after immunization with yeast-derived secreted influenza virus hemagglutinin. (3/1453)

The A/Victoria/3/75 (H3N2-subtype) hemagglutinin (HA) gene was engineered for expression in Pichia pastoris as a soluble secreted molecule. The HA cDNA lacking the C-terminal transmembrane anchor-coding sequence was fused to the Saccharomyces cerevisiae alpha-mating factor secretion signal and placed under control of the methanol-inducible P. pastoris alcohol oxidase 1 (AOX1) promoter. Growth of transformants on methanol-containing medium resulted in the secretion of recombinant non-cleaved soluble hemagglutinin (HA0s). Remarkably, the pH of the induction medium had an important effect on the expression level, the highest level being obtained at pH 8.0. The gel filtration profile and the reactivity against a panel of different HA-conformation specific monoclonal antibodies indicated that HA0s was monomeric. Analysis of the N-linked glycans revealed a typical P. pastoris type of glycosylation, consisting of glycans with 10-12 glycosyl residues. Mice immunized with purified soluble hemagglutinin (HA0s) showed complete protection against a challenge with 10 LD50 of mouse-adapted homologous virus (X47), whereas all control mice succumbed. Heterologous challenge with X31 virus [A/Aichi/2/68 (H3N2-subtype)], resulted in significantly higher survival rates in the immunized group compared with the control group. These results, together with the safety, reliability and economic potential of P. pastoris, as well as the flexibility and fast adaptation of the expression system may allow development of an effective recombinant influenza vaccine.  (+info)

Cloning, mutagenesis, and structural analysis of human pancreatic alpha-amylase expressed in Pichia pastoris. (4/1453)

Human pancreatic alpha-amylase (HPA) was expressed in the methylotrophic yeast Pichia pastoris and two mutants (D197A and D197N) of a completely conserved active site carboxylic acid were generated. All recombinant proteins were shown by electrospray ionization mass spectrometry (ESI-MS) to be glycosylated and the site of attachment was shown to be Asn461 by peptide mapping in conjunction with ESI-MS. Treatment of these proteins with endoglycosidase F demonstrated that they contained a single N-linked oligosaccharide and yielded a protein product with a single N-acetyl glucosamine (GlcNAc), which could be crystallized. Solution of the crystal structure to a resolution of 2.0 A confirmed the location of the glycosyl group as Asn461 and showed that the recombinant protein had essentially the same conformation as the native enzyme. The kinetic parameters of the glycosylated and deglycosylated wild-type proteins were the same while the k(cat)/Km values for D197A and D197N were 10(6)-10(7) times lower than the wild-type enzyme. The decreased k(cat)/Km values for the mutants confirm that D197 plays a crucial role in the hydrolytic activity of HPA, presumably as the catalytic nucleophile.  (+info)

The N-terminal CUB-epidermal growth factor module pair of human complement protease C1r binds Ca2+ with high affinity and mediates Ca2+-dependent interaction with C1s. (5/1453)

The Ca2+-dependent interaction between complement serine proteases C1r and C1s is mediated by their alpha regions, encompassing the major part of their N-terminal CUB-EGF-CUB (where EGF is epidermal growth factor) module array. In order to define the boundaries of the C1r domain(s) responsible for Ca2+ binding and Ca2+-dependent interaction with C1s and to assess the contribution of individual modules to these functions, the CUB, EGF, and CUB-EGF fragments were expressed in eucaryotic systems or synthesized chemically. Gel filtration studies, as well as measurements of intrinsic Tyr fluorescence, provided evidence that the CUB-EGF pair adopts a more compact conformation in the presence of Ca2+. Ca2+-dependent interaction of intact C1r with C1s was studied using surface plasmon resonance spectroscopy, yielding KD values of 10.9-29.7 nM. The C1r CUB-EGF pair bound immobilized C1s with a higher KD (1.5-1.8 microM), which decreased to 31.4 nM when CUB-EGF was used as the immobilized ligand and C1s was free. Half-maximal binding was obtained at comparable Ca2+ concentrations ranging from 5 microM with intact C1r to 10-16 microM for C1ralpha and CUB-EGF. The isolated CUB and EGF fragments or a CUB + EGF mixture did not bind C1s. These data demonstrate that the C1r CUB-EGF module pair (residues 1-175) is the minimal segment required for high affinity Ca2+ binding and Ca2+-dependent interaction with C1s and indicate that Ca2+ binding induces a more compact folding of the CUB-EGF pair.  (+info)

Cloning, expression, and properties of a nonneuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis. (6/1453)

We have isolated a full-length cDNA encoding an acetylcholinesterase secreted by the nematode parasite Nippostrongylus brasiliensis. The predicted protein is truncated in comparison with acetylcholinesterases from other organisms such that the carboxyl terminus aligns closely to the end of the catalytic domain of the vertebrate enzymes. The residues in the catalytic triad are conserved, as are the six cysteines which form the three intramolecular disulfide bonds. Three of the fourteen aromatic residues which line the active site gorge in the Torpedo enzyme are substituted by nonaromatic residues, corresponding to Tyr-70 (Thr), Trp-279 (Asn), and Phe-288 (Met). High level expression was obtained via secretion from Pichia pastoris. The purified enzyme behaved as a monomeric hydrophilic species. Although of invertebrate origin and possessing the above substitutions in the active site gorge residues, the enzyme efficiently hydrolyzed acetylthiocholine and showed minimal activity against butyrylthiocholine. It displayed excess substrate inhibition with acetylthiocholine at concentrations over 2. 5 mM and was highly sensitive to both active site and "peripheral" site inhibitors. Northern blot analysis indicated a progressive increase in mRNA for AChE B in parasites isolated from 6 days postinfection.  (+info)

Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris. (7/1453)

We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups.  (+info)

Physiological effects and adjuvanticity of recombinant brushtail possum TNF-alpha. (8/1453)

The present paper describes the physiological properties of recombinant possum TNF-alpha and an adjuvant effect on antibody responses to the model protein antigen, keyhole limpet haemocyanin (KLH). For these studies recombinant possum TNF-alpha was produced in the yeast Pichia pastoris. The recombinant cytokine was secreted into the culture medium and purified by gel filtration. Possum TNF-alpha produced in this expression system was N-glycosylated and bioactive in two different assays. In a murine fibroblast L929 cytotoxicity assay, the possum TNF-alpha had lower specific activity compared to human TNF-alpha, while in a possum-specific assay, possum TNF-alpha enhanced the proliferation of PHA-stimulated possum thymocytes and was more active than human TNF-alpha. The physiological effect of the recombinant possum TNF-alpha was investigated in groups of possums administered doses of 6, 30 or 150 micrograms of cytokine. For each dose, TNF-alpha caused profound effects on the numbers of circulating leucocytes characterized by a three-to-four-fold increase in neutrophil numbers at 6-24 h after injection and an initial sharp decrease in lymphocyte numbers. The efficacy of TNF-alpha as an immunological adjuvant was determined in possums administered KLH (125 micrograms) in an aqueous or Al(OH)3-based formulation with or without added recombinant TNF-alpha (150 micrograms). Serum antibody responses to KLH were monitored by ELISA. The TNF-alpha stimulated two-fold and four-fold increases in antibody levels in aqueous and Al(OH)3-based vaccine formulations, respectively. The strongest antibody responses were observed in the group of possums that received KLH formulated in Al(OH)3 with addition of TNF-alpha.  (+info)