Fortification: overcoming technical and practical barriers. (73/617)

The main barriers to successful iron fortification are the following: 1) finding an iron compound that is adequately absorbed but causes no sensory changes to the food vehicle; and 2) overcoming the inhibitory effect on iron absorption of dietary components such as phytic acid, phenolic compounds and calcium. These barriers have been successfully overcome with some food vehicles but not with others. Iron-fortified fish sauce, soy sauce, curry powder, sugar, dried milk, infant formula and cereal based complementary foods have been demonstrated to improve iron status in targeted populations. The reasons for this success include the use of soluble iron such as ferrous sulfate, the addition of ascorbic acid as an absorption enhancer or the use of NaFeEDTA to overcome the negative effect of phytic acid. In contrast, at the present time, it is not possible to guarantee a similar successful fortification of cereal flours or salt. There is considerable doubt that the elemental iron powders currently used to fortify cereal flours are adequately absorbed, and there is an urgent need to investigate their potential for improving iron status. Better absorbed alternative compounds for cereal fortification include encapsulated ferrous sulfate and NaFeEDTA, which, unlike ferrous sulfate, do not provoke fat oxidation of cereals during storage. Encapsulated compounds also offer a possibility to fortify low grade salt without causing off-colors or iodine loss. Finally, a new and useful additional approach to ensuring adequate iron absorption from cereal based complementary foods is the complete degradation of phytic acid with added phytases or by activating native cereal phytases.  (+info)

Influence of inositol hexaphosphate binding on subunit dissociation in methemoglobin. (74/617)

The tetramer-dimer equilibria of various forms of methemoglobin have been measured by sedimentation equilibrium to test the hypothesis of Perutz that high spin derivatives can be switched by inositol hexaphosphate (Inos-P6) from the R state to the T state more readily than low spin derivatives. Since transitions from the R state to the T state are accompanied by a decrease in the tetramer-dimer dissociation constant (K4,2), this parameter is a quantitative indicator of the conformational state. Measurements of K4,2 were performed using an analytical ultracentrifuge with absorption optics and a scanner-computer system. Statistical analysis of the sedimentation data indicated that the stoichiometry if Inos-P6 binding is 1 molecule/hemoglobin tetramer and 2 molecules/hemoglobin dimer. The apparent affinity of the dimer sites for Inos-P6 is much lower than the corresponding value for the tetramer site. As a result of the stoichiometries, at low concentrations Inos-P6 shifts the tetramer-dimer equilibrium in favor of the tetramer, but at high concentrations Inos-P6 shifts the equilibrium in favor of the dimer. Te tetramer binding site for Inos-P6 of various liganded forms of hemoglobin appears to be the same as has been established for deoxyhemoglobin, since the effect of Inos-P6 on subunit dissociation is reduced in pyridoxylated derivatives. Values of K4,2 for aquo-, azido- and cyanomethemoglobin in 0.01 M 2,2-bis(hydroxymethyl)-2,2',2''-nitroethanol buffer, pH 6.0/0.1 M NaCl, are all near 2 X 10(-5) M. Upon addition of 50 muM Inos-P6 the values of K4,2 for all three forms are shifted to near 10(-9) M. Since the aquo derivative is high spin, while the azido and cyano derivatives are low spin, the similarity of values for the derivatives in the presence and absence of Inos-P6 indicate that the changes in K4,2 are not spin-spin state dependent. For another high spin derivative, fluoromethemoglobin, such high concentrations of NaF are required that ionic strength effects are encountered. When data at several NaF concentrations are extrapolated to 0.1 M NaF to correct for the ionic strength effects, values of K4,2 of 7 X 10(-6) M and 10(-8) M are obtained for solutions in the absence and in the presence of 50 muM Inos-P6, respectively. Therefore the results with the fluoro derivative, in conjunction with the other forms of methemoglobin, support the view that high spin derivatives do not exhibit a greater response to Inos-P6 than low spin derivatives.  (+info)

Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. (75/617)

In eukaryotic cells, DNA double-strand breaks can be repaired by non-homologous end-joining, a process dependent upon Ku70/80, XRCC4 and DNA ligase IV. In mammals, this process also requires DNA-PK(cs), the catalytic subunit of the DNA-dependent protein kinase DNA-PK. Previously, inositol hexakisphosphate (IP6) was shown to be bound by DNA-PK and to stimulate DNA-PK-dependent end-joining in vitro. Here, we localize IP6 binding to the Ku70/80 subunits of DNA- PK, and show that DNA-PK(cs) alone exhibits no detectable affinity for IP6. Moreover, proteolysis mapping of Ku70/80 in the presence and absence of IP6 indicates that binding alters the conformation of the Ku70/80 heterodimer. The yeast homologue of Ku70/80, yKu70/80, fails to bind IP6, indicating that the function of IP6 in non-homologous end-joining, like that of DNA-PK(cs), is unique to the mammalian end-joining process.  (+info)

Nutritional quality of extruded kidney bean (Phaseolus vulgaris L. var. Pinto) and its effects on growth and skeletal muscle nitrogen fractions in rats. (76/617)

The influence of extrusion cooking on the protein content, amino acid profile, and concentration of antinutritive compounds (phytic acid, condensed tannins, polyphenols, trypsin, chymotrypsin, alpha-amylase inhibitors, and hemagglutinating activity) in kidney bean seeds (Phaseolus vulgaris L. var. Pinto) was investigated. Growing male rats were fed diets based on casein containing raw or extruded kidney beans with or without methionine supplementation for 8 or 15 d. Rates of growth, food intake, and protein efficiency ratio were measured and the weight of the gastrocnemius muscle and the composition of its nitrogenous fraction was determined. Extrusion cooking reduced (P < 0.01) phytic acid, condensed tannins, and trypsin, chymotrypsin, and (alpha-amylase inhibitory activities. Furthermore, hemagglutinating activity was abolished by extrusion treatment. Protein content was not affected by this thermal treatment. Rats fed raw kidney bean lost BW rapidly and the majority died by 9 d. Pretreatment of the beans by extrusion cooking improved food intake and utilization by the rats and they gained BW. Supplementation of extruded kidney bean with methionine further enhanced (P < 0.01) food conversion efficiency and growth. However, BW gains and muscle composition still differed (P < 0.01) from those of rats fed a high-quality protein.  (+info)

Inositol hexakisphosphate promotes dynamin I- mediated endocytosis. (77/617)

Membrane homeostasis is maintained by exocytosis and endocytosis. The molecular mechanisms regulating the interplay between these two processes are not clear. Inositol hexakisphosphate (InsP(6)) is under metabolic control and serves as a signal in the pancreatic beta cell stimulus-secretion coupling by increasing Ca(2+)-channel activity and insulin exocytosis. We now show that InsP(6) also promotes dynamin I-mediated endocytosis in the pancreatic beta cell. This effect of InsP(6) depends on calcineurin-induced dephosphorylation and is accounted for by both activation of protein kinase C and inhibition of the phosphoinositide phosphatase synaptojanin and thereby formation of phosphatidylinositol 4,5-bisphosphate. In regulating both exocytosis and endocytosis, InsP(6) thus may have an essential integral role in membrane trafficking.  (+info)

Zinc homeostasis in Malawian children consuming a high-phytate, maize-based diet. (78/617)

BACKGROUND: Zinc deficiency in children is an important public health concern in the developing world, and the consumption of predominantly cereal-based diets with a high phytate content may contribute to the risk. The gastrointestinal tract plays a central role in absorbing and conserving zinc, yet it has not been carefully studied in such children. OBJECTIVE: This study investigated zinc homeostasis in healthy, free-living Malawian children with habitually high-phytate diets to better understand the role of the gastrointestinal tract. DESIGN: We evaluated zinc homeostasis in 10 children aged 2-5 y who were consuming a maize-based diet (phytate:zinc molar ratio of 23:1). Zinc stable isotopes were administered orally and intravenously. The tracer and tracee were measured in urine and feces. RESULTS: Endogenous fecal zinc was high in comparison with results for this measure in previous studies. Typical correlations seen in subjects consuming a low-phytate diet between total absorbed zinc, the size of the exchangeable zinc pool, and endogenous fecal zinc were not observed. Fractional absorption of zinc was 0.24. CONCLUSIONS: Zinc homeostasis was perturbed, particularly by large, endogenous fecal zinc losses, in this vulnerable population. The effects of interventions to improve zinc status, including dietary phytate reduction, on zinc homeostasis merit further study.  (+info)

A new strategy for exploiting ion exchange in sequential injection analysis: in-line phytic acid separation/determination in foods as an example. (79/617)

A novel strategy for exploiting ion exchange in sequential injection systems is proposed. The procedure is based on the selection of a defined volume of a resin suspension, which is introduced and packed in the analytical path, establishing a resin mini-column in the system. The passage of a selected sample volume through the resin mini-column leads to the retention of the analyte, while the sample matrix is discarded. The analyte is eluted during the passage of the eluant/reagent by the packed beads, being the analytical signal monitored (absorbance) in the liquid phase. The beads are then aspirated back to the holding coil and directed to a recovery flask, linked at the selection valve; then the system is ready to begin a new cycle. With the proposed strategy, the main characteristics of the sequential injection system are kept as any new artifact is added to the manifold and system reconfiguration is not required. The feasibility of the approach is demonstrated by the phytic acid determination in food samples. For this specific application, AG1-X8 was selected as ion exchanger, and a solution containing Cl- and Fe(III)-salicylate complex was used as eluant and spectrophotometric reagent.  (+info)

The synthesis of inositol hexakisphosphate. Characterization of human inositol 1,3,4,5,6-pentakisphosphate 2-kinase. (80/617)

The enzyme(s) responsible for the production of inositol hexakisphosphate (InsP(6)) in vertebrate cells are unknown. In fungal cells, a 2-kinase designated Ipk1 is responsible for synthesis of InsP(6) by phosphorylation of inositol 1,3,4,5,6-pentakisphosphate (InsP(5)). Based on limited conserved sequence motifs among five Ipk1 proteins from different fungal species, we have identified a human genomic DNA sequence on chromosome 9 that encodes human inositol 1,3,4,5,6-pentakisphosphate 2-kinase (InsP(5) 2-kinase). Recombinant human enzyme was produced in Sf21 cells, purified, and shown to catalyze the synthesis of InsP(6) or phytic acid in vitro. The recombinant protein converted 31 nmol of InsP(5) to InsP(6)/min/mg of protein (V(max)). The Michaelis-Menten constant for InsP(5) was 0.4 microM and for ATP was 21 microM. Saccharomyces cerevisiae lacking IPK1 do not produce InsP(6) and show lethality in combination with a gle1 mutant allele. Here we show that expression of the human InsP(5) 2-kinase in a yeast ipk1 null strain restored the synthesis of InsP(6) and rescued the gle1-2 ipk1-4 lethal phenotype. Northern analysis on human tissues showed expression of the human InsP(5) 2-kinase mRNA predominantly in brain, heart, placenta, and testis. The isolation of the gene responsible for InsP(6) synthesis in mammalian cells will allow for further studies of the InsP(6) signaling functions.  (+info)