Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. (73/2359)

The chromophore-binding properties of the higher plant light-harvesting protein CP29 have been studied by using site-directed mutagenesis of pigment-binding residues. Overexpression of the apoproteins in bacteria was followed by reconstitution in vitro with purified pigments, thus obtaining a family of mutant CP29 proteins lacking individual chromophore-binding sites. Biochemical characterization allowed identification of the eight porphyrins and two xanthophyll-binding sites. It is shown that the four porphyrin-binding sites (A1, A2, A4, and A5) situated in the central, twofold-symmetrical domain of the protein are selective for Chl-a, whereas the four peripheral sites (A3, B3, B5, and B6) have mixed Chl-a-Chl-b specificity. Within a site, porphyrin coordination by glutamine increases affinity for Chl-b as compared with glutamate. Xanthophyll site L1 is occupied by lutein, whereas site L2 can bind violaxanthin or neoxanthin. The protein is relatively stable when site L2 site is empty, suggesting that xanthophylls can be exchanged during operation of xanthophyll cycle-dependent photoprotection mechanism. Differential absorption spectroscopy allowed determination of transition energy levels for individual chromophores, thus opening the way to calculation of energy-transfer rates between Chl in higher plant antenna proteins.  (+info)

Nucleotide sequence of psbQ gene for 16-kDa protein of oxygen-evolving complex from Arabidopsis thaliana and regulation of its expression. (74/2359)

The psbQ gene encoding a 16-kDa polypeptide of the oxygen-evolving complex of photosystem II has been isolated from Arabidopsis thaliana and characterized. The gene consists of a 28 nucleotide long leader sequence, two introns and three exons encoding a 223-amino-acid precursor polypeptide. The first 75 amino acids act as a transit peptide for the translocation of the polypeptide into the thylakoid lumen. Expression studies show that the gene is light-inducible and expresses only in green tissues with high steady-state mRNA levels in leaves. Using this gene as a probe, restriction fragment length polymorphism between two ecotypes, Columbia and Estland, has also been detected.  (+info)

Voltammetric detection of superoxide production by photosystem II. (75/2359)

Oxygen radicals play both pathological and physiological roles in biological systems. The detection of such radicals is difficult due to their transient nature and the presence of highly efficient antioxidant mechanisms. In plants the physiological role of oxygen is twofold, oxygen is produced by the oxidation of water and consumed as an electron acceptor. The direct involvement of oxygen in photosynthetic events exposes the photosynthetic apparatus to a high probability of damage by oxygen radicals. We report here a direct, simple and rapid method for the measurement of superoxide in vitro based on voltammetric detection. It has potential applications for other in vitro systems investigating superoxide production. We show that in addition to the well established production of superoxide from photosystem I, under reducing conditions superoxide is also produced by photosystem II, probably from the Q(A) site.  (+info)

Chloroplast FtsY, chloroplast signal recognition particle, and GTP are required to reconstitute the soluble phase of light-harvesting chlorophyll protein transport into thylakoid membranes. (76/2359)

The integration of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membrane proceeds in two steps. First, LHCP interacts with a chloroplast signal recognition particle (cpSRP) to form a soluble targeting intermediate called the transit complex. Second, LHCP integrates into the thylakoid membrane in the presence of GTP, at least one other soluble factor, and undefined membrane components. We previously determined that cpSRP is composed of 43- and 54-kDa polypeptides. We have examined the subunit stoichiometry of cpSRP and find that it is trimeric and composed of two subunits of cpSRP43/subunit of cpSRP54. A chloroplast homologue of FtsY, an Escherichia coli protein that is critical for the function of E. coli SRP, was found largely in the stroma unassociated with cpSRP. When chloroplast FtsY was combined with cpSRP and GTP, the three factors promoted efficient LHCP integration into thylakoid membranes in the absence of stroma, demonstrating that they are all required for reconstituting the soluble phase of LHCP transport.  (+info)

Light-induced degradation of cytochrome b559 during photoinhibition of the photosystem II reaction center. (77/2359)

The behaviour of cytochrome (cyt) b559 during acceptor- and donor-side photoinhibition has been investigated in oxygen-evolving and non-evolving photosystem II (PSII) membranes. Strong illumination at 20 degrees C under aerobiosis induced a strong decrease in the absorbance of the cyt b559 alpha-band in the two preparations. This absorbance decline was observed only in non-oxygen-evolving PSII samples when illumination was performed under aerobiosis but at 4 degrees C, or under anaerobiosis at 20 degrees C. These results suggest that acceptor-side photoinhibition induces the degradation of cyt b559 by a mechanism related to an enzymatic reaction mediated by singlet oxygen. Donor-side photoinhibition may induce, however, a non-enzymatic photocleavage of the protein.  (+info)

Arabidopsis mutants lacking the 43- and 54-kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes. (78/2359)

The chloroplast signal recognition particle (cpSRP) is a protein complex consisting of 54- and 43-kD subunits encoded by the fifty-four chloroplast, which encodes cpSRP54 (ffc), and chaos (cao) loci, respectively. Two new null alleles in the ffc locus have been identified. ffc1-1 is caused by a stop codon in exon 10, while ffc1-2 has a large DNA insertion in intron 8. ffc mutants have yellow first true leaves that subsequently become green. The reaction center proteins D1, D2, and psaA/B, as well as seven different light-harvesting chlorophyll proteins (LHCPs), were found at reduced levels in the young ffc leaves but at wild-type levels in the older leaves. The abundance of the two types of LHCP was unaffected by the mutation, while two others were increased in the absence of cpSRP54. Null mutants in the cao locus contain reduced levels of the same subset of LHCP proteins as ffc mutants, but are distinguishable in four ways: young leaves are greener, the chlorophyll a/b ratio is elevated, levels of reaction center proteins are normal, and there is no recovery in the level of LHCPs in the adult plant. The data suggest that cpSRP54 and cpSRP43 have some nonoverlapping roles and that alternative transport pathways can compensate for the absence of a functional cpSRP.  (+info)

Chloroplast acclimation in leaves of Guzmania monostachia in response to high light. (79/2359)

Acclimation of leaves to high light (HL; 650 micromol m(-2) s(-1)) was investigated in the long-lived epiphytic bromeliad Guzmania monostachia and compared with plants maintained under low light (LL; 50 micromol m(-2) s(-1)). Despite a 60% decrease in total chlorophyll in HL-grown plants, the chlorophyll a/b ratio remained stable. Additionally, chloroplasts from HL-grown plants had a much lower thylakoid content and reduced granal stacking. Immunofluorescent labeling techniques were used to quantify the level of photosynthetic polypeptides. HL-grown plants had 30% to 40% of the content observed in LL-grown plants for the light-harvesting complex associated with photosystems I and II, the 33-kD photosystem II polypeptide, and Rubisco. These results were verified using conventional biochemical techniques, which revealed a comparable 60% decrease in Rubisco and total soluble protein. When expressed on a chlorophyll basis, the amount of protein and Rubisco was constant for HL- and LL-grown plants. Acclimation to HL involves a tightly coordinated adjustment of photosynthesis, indicating a highly regulated decrease in the number of photosynthetic units manifested at the level of the content of light-harvesting and electron transport components, the amount of Rubisco, and the induction of Crassulacean acid metabolism. This response occurs in mature leaves and may represent a strategy that is optimal for the resource-limited epiphytic niche.  (+info)

Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. (80/2359)

We investigated the localization, structure and function of the biliproteins of the oxygenic photosynthetic prokaryote Acaryochloris marina, the sole organism known to date that contains chlorophyll d as the predominant photosynthetic pigment. The biliproteins were isolated by means of sucrose gradient centrifugation, ion exchange and gel filtration chromatography. Up to six biliprotein subunits in a molecular mass range of 15.5-18.4 kDa were found that cross-reacted with antibodies raised against phycocyanin or allophycocyanin from a red alga. N-Terminal sequences of the alpha- and beta-subunits of phycocyanin showed high homogeneity to those of cyanobacteria and red algae, but not to those of cryptomonads. As shown by electron microscopy, the native biliprotein aggregates are organized as rod-shaped structures and located on the cytoplasmic side of the thylakoid membranes predominantly in unstacked thylakoid regions. Biochemical and spectroscopic analysis revealed that they consist of four hexameric units, some of which are composed of phycocyanin alone, others of phycocyanin together with allophycocyanin. Spectroscopic analysis of isolated photosynthetic reaction center complexes demonstrated that the biliproteins are physically attached to the photosystem II complexes, transferring light energy to the photosystem II reaction center chlorophyll d with high efficiency.  (+info)