Interference competition and parasite virulence. (33/126)

Within-host competition between parasites, a consequence of infection by multiple strains, is predicted to favour rapid host exploitation and greater damage to hosts (virulence). However, the inclusion of biological variables can drastically change this relationship. For example, if competing parasite strains produce toxins that kill each other (interference competition), their growth rates and virulence may be reduced relative to single-strain infections. Bacteriocins are antimicrobial toxins produced by bacteria that target closely related strains and species, and to which the producing strain is immune. We investigated competition between bacteriocin-producing, insect-killing bacteria (Photorhabdus and Xenorhabdus) and how this competition affected virulence in caterpillars. Where one strain could kill the other, and not vice versa, the non-killing strain was competitively excluded, and insect mortality was the same as that of the killing strain alone. However, when caterpillars were multiply infected by strains that could kill each other, we did not observe competitive exclusion and their virulence was less than single-strain infections. The ubiquity and diversity of bacteriocins among pathogenic bacteria suggest mixed infections will be, on average, less virulent than single infections.  (+info)

Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov. (34/126)

The relationship of Photorhabdus isolates that were cultured from human clinical specimens in Australia to Photorhabdus asymbiotica isolates from human clinical specimens in the USA and to species of the genus Photorhabdus that are associated symbiotically with entomopathogenic nematodes was evaluated. A polyphasic approach that involved DNA-DNA hybridization, phylogenetic analyses of 16S rRNA and gyrB gene sequences and phenotypic characterization was adopted. These investigations showed that gyrB gene sequence data correlated well with DNA-DNA hybridization and phenotypic data, but that 16S rRNA gene sequence data were not suitable for defining species within the genus Photorhabdus. Australian clinical isolates proved to be related most closely to clinical isolates from the USA, but the two groups were distinct. A novel subspecies, Photorhabdus asymbiotica subsp. australis subsp. nov. (type strain, 9802892T=CIP 108025T=ACM 5210T), is proposed, with the concomitant creation of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. Analysis of gyrB sequences, coupled with previously published data on DNA-DNA hybridization and PCR-RFLP analysis of the 16S rRNA gene, indicated that there are more than the three subspecies of Photorhabdus luminescens that have been described and confirmed the validity of the previously proposed subdivision of Photorhabdus temperata. Although a non-luminescent, symbiotic isolate clustered consistently with P. asymbiotica in gyrB phylogenetic analyses, DNA-DNA hybridization indicated that this isolate does not belong to the species P. asymbiotica and that there is a clear distinction between symbiotic and clinical species of Photorhabdus.  (+info)

Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay. (35/126)

Bacterial luciferases (LuxAB) can be readily classed as slow or fast decay luciferases based on their rates of luminescence decay in a single turnover assay. Luciferases from Vibrio harveyi and Xenorhabdus (Photorhabdus) luminescens have slow decay rates, and those from the Photobacterium genus, such as Photobacterium fisheri, P. phosphoreum and P. leiognathi, have rapid decay rates. By substitution of a 67-amino-acid stretch of P. phosphoreum LuxA in the central region of the LuxA subunit, the 'slow' X. luminescens luciferase was converted into a chimaeric luciferase with a significantly more rapid decay rate [Valkova, Szittner and Meighen (1999) Biochemistry 38, 13820-13828]. To understand better the role of specific residues in the classification of luciferases as slow and fast decay, we have conducted random mutagenesis on this region. One of the mutants generated by a single mutation on LuxA at position 175 [E175G (Glu175-->Gly)] resulted in the 'slow decay' X. luminescens luciferase being converted into a luciferase with a significantly more rapid decay rate. These results indicate the importance of Glu175 in LuxA as a critical residue for differentiating between 'slow' and 'fast' luciferases and show that this distinction is primarily due to differences in aldehyde affinity and in the decomposition of the luciferase-flavin-oxygen intermediate.  (+info)

Comparison of proteolytic activities produced by entomopathogenic Photorhabdus bacteria: strain- and phase-dependent heterogeneity in composition and activity of four enzymes. (36/126)

Twenty strains (including eight phase variant pairs) of nematode-symbiotic and insect-pathogenic Photorhabdus bacteria were examined for the production of proteolytic enzymes by using a combination of several methods, including gelatin liquefaction, zymography coupled to native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and activity measurement with two chromogen substrate types. Four protease activities (approximately 74, approximately 55, approximately 54, and approximately 37 kDa) could be separated. The N-terminal sequences of three of the proteases were determined, and a comparison with sequences in databases allowed identification of these proteases as HEXXH metallopeptidases. Thus, the 74-kDa protease (described formerly as Php-B [J. Marokhazi, G. Koczan, F. Hudecz, L. Graf, A. Fodor, and I. Venekei, Biochem. J. 379:633-640, 2004) is an ortholog of OpdA, a member the thimet oligopeptidase family, and the 55-kDa protease is an ortholog of PrtA, a HEXXH+H peptidase in clan MB (metzincins), while the 37-kDa protease (Php-C) belongs to the HEXXH+E peptidases in clan MA. The 54-kDa protease (Php-D) is a nonmetalloenzyme. PrtA and Php-C were zymographically detected, and they occurred in several smaller forms as well. OpdA could not be detected by zymography. PrtA, Php-C, and Php-D were secreted proteases; OpdA, in contrast, was an intracellular enzyme. OpdA activity was found in every strain tested, while Php-D was detected only in the Brecon/1 strain. There was significant strain variation in the secretion of PrtA and Php-C activities, but reduced activity or a lack of activity was not specific to secondary-phase variants. The presence of PrtA, OpdA, and Php-C activities could be detected in the hemolymph of Galleria melonella larvae 20 to 40 h postinfection. These proteases appear not to be directly involved in the pathogenicity of Photorhabdus, since strains or phase variants lacking any of these proteases do not show reduced virulence when they are injected into G. melonella larvae.  (+info)

The pbgPE operon in Photorhabdus luminescens is required for pathogenicity and symbiosis. (37/126)

Photorhabdus is a genus of gram-negative Enterobacteriaceae that is pathogenic to insect larvae while also maintaining a mutualistic relationship with nematodes from the family Heterorhabditis, where the bacteria occupy the gut of the infective juvenile (IJ) stage of the nematode. In this study we describe the identification and characterization of a mutation in the pbgE1 gene of Photorhabdus luminescens TT01, predicted to be the fifth gene in the pbgPE operon. We show that this mutant, BMM305, is strongly attenuated in virulence against larvae of the greater wax moth, Galleria mellonella, and we report that BMM305 is more sensitive to the cationic antimicrobial peptide, polymyxin B, and growth in mildly acidic pH than the parental strain of P. luminescens. Moreover, we also show that the lipopolysaccharide (LPS) present on the surface of BMM305 does not appear to contain any O antigen. Complementation studies reveal that the increased sensitivity to polymyxin B and growth in mildly acidic pH can be rescued by the in trans expression of pbgE1, while the defects in O-antigen assembly and pathogenicity require the in trans expression of pbgE1 and the downstream genes pbgE2 and pbgE3. Finally, we show that BMM305 is defective in symbiosis as this mutant is unable to colonize the gut of the IJ stage of the nematode. Therefore, we conclude that the pbgPE operon is required for both pathogenicity and symbiosis in P. luminescens.  (+info)

The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens TT01. (38/126)

Photorhabdus is a genus of Gram-negative bacteria from the family Enterobacteriaceae. Members of Photorhabdus have a complex life cycle during which the bacterium has a pathogenic interaction with insect larvae whilst also maintaining a mutualistic relationship with nematodes from the family Heterorhabditidae. During growth in the insect, Photorhabdus bacteria produce a broad-spectrum antibiotic identified as 3,5-dihydroxy-4-isopropylstilbene (ST). The biochemical pathway responsible for the production of this antibiotic has not been characterized. In this report, a mutant strain of Photorhabdus luminescens subsp. laumondii TT01, BMM901, has been isolated, by transposon mutagenesis, that is unable to produce the ST antibiotic. Using in silico studies, feeding experiments and biochemical analyses, it is shown that the gene mutated in this strain, stlA, encodes phenylalanine ammonia-lyase (PAL). PAL catalyses the non-oxidative deamination of l-phenylalanine to trans-cinnamic acid and the enzyme is ubiquitous in plants, where it is involved in the production of phenylpropanoids such as lignin and phytoalexins. However, this is the first report of PAL activity in a member of the Proteobacteria.  (+info)

Photorhabdus asymbiotica, a pathogen emerging on two continents that proves that there is no substitute for a well-trained clinical microbiologist. (39/126)

A 54-year-old ranch hand presented to the emergency room with an alleged spider bite and multiple abscesses. Both wound and blood cultures grew Photorhabdus asymbiotica, an enteric gram-negative rod that was initially misidentified by the hospital's rapid identification system. Clinical laboratories should be aware of the limitations of their rapid identification systems and always use them as an adjunct to analysis of morphological and phenotypic traits.  (+info)

Whole-genome comparison between Photorhabdus strains to identify genomic regions involved in the specificity of nematode interaction. (40/126)

The bacterium Photorhabdus establishes a highly specific association with Heterorhabditis, its nematode host. Photorhabdus strains associated with Heterorhabditis bacteriophora or Heterorhabditis megidis were compared using a Photorhabdus DNA microarray. We describe 31 regions belonging to the Photorhabdus flexible gene pool. Distribution analysis of regions among the Photorhabdus genus identified loci possibly involved in nematode specificity.  (+info)