Reassessment of the taxonomic position of Vibrio iliopiscarius (Onarheim et al. 1994) and proposal for Photobacterium iliopiscarium comb. nov. (1/222)

The phylogenetic position of Vibrio iliopiscarius was inferred by the maximum-likelihood, maximum-parsimony and neighbour-joining methods on the basis of almost complete 16S rRNA gene sequences. The results showed that this species falls into the same cluster as Photobacterium species and is clearly distinct from other Vibrio species. Its nearest phylogenetic neighbour is Photobacterium phosphoreum. From these results, it is concluded that V. iliopiscarius should be reclassified as Photobacterium iliopiscarium comb. nov., the type strain of which is PS1T (= ATCC 51760T).  (+info)

Superoxide dismutase and catalase in Photobacterium damselae subsp. piscicida and their roles in resistance to reactive oxygen species. (2/222)

Photobacterium damselae subsp. piscicida (formerly Pasteurella piscicida) is the causative agent of pasteurellosis or pseudotuberculosis in warm water marine fish. Enzymes which neutralize reactive oxygen species, produced during aerobic metabolism or during respiratory burst in fish macrophages, are important virulence factors in many pathogens. This study characterizes a periplasmic superoxide dismutase (SOD) and a cytoplasmic catalase in P. damselae. Purification and partial amino-terminal sequencing confirmed the SOD to be iron-cofactored, with a high degree of homology to other bacterial FeSODs. The SOD was common to all strains analysed in terms of type, location and activity, whilst the catalase varied in activity between strains. The catalase was constitutively expressed, but the SOD appeared to be repressed under low oxygen conditions. In spite of the presence of a periplasmic SOD, P. damselae was susceptible to killing by exogenous superoxide anion generated in a cell-free system. Addition of exogenous SOD to this system did not abolish the bactericidal effect; however, addition of catalase was protective. These results suggest that lack of periplasmic catalase may be implicated in susceptiblity to killing by reactive oxygen species.  (+info)

Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. (3/222)

There is considerable evidence correlating the production of increased proportions of membrane unsaturated fatty acids (UFAs) with bacterial growth at low temperatures or high pressures. In order to assess the importance of UFAs to microbial growth under these conditions, the effects of conditions altering UFA levels in the psychrotolerant piezophilic deep-sea bacterium Photobacterium profundum SS9 were investigated. The fatty acids produced by P. profundum SS9 grown at various temperatures and pressures were characterized, and differences in fatty acid composition as a function of phase growth, and between inner and outer membranes, were noted. P. profundum SS9 was found to exhibit enhanced proportions of both monounsaturated (MUFAs) and polyunsaturated (PUFAs) fatty acids when grown at a decreased temperature or elevated pressure. Treatment of cells with cerulenin inhibited MUFA but not PUFA synthesis and led to a decreased growth rate and yield at low temperature and high pressure. In addition, oleic acid-auxotrophic mutants were isolated. One of these mutants, strain EA3, was deficient in the production of MUFAs and was both low-temperature sensitive and high-pressure sensitive in the absence of exogenous 18:1 fatty acid. Another mutant, strain EA2, produced little MUFA but elevated levels of the PUFA species eicosapentaenoic acid (EPA; 20:5n-3). This mutant grew slowly but was not low-temperature sensitive or high-pressure sensitive. Finally, reverse genetics was employed to construct a mutant unable to produce EPA. This mutant, strain EA10, was also not low-temperature sensitive or high-pressure sensitive. The significance of these results to the understanding of the role of UFAs in growth under low-temperature or high-pressure conditions is discussed.  (+info)

Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. (4/222)

Isolation of bacteria from the luminous organ of the fish Monocentris japonica has revealed that the organ contains a pure culture of luminous bacteria. For the four fish examined, all contained Photobacterium fischeri as their luminous bacterial symbiont. This is the first time that P. fischeri has been identified in a symbiotic association. A representative isolate (MJl) of the light organ population was selected for in vivo studies of its luminous system. Several physiological features suggest adaptation for symbiotic existence. First, MJl has been shown to produce and respond to an inducer of luciferase that could accumulate in the light organ. Secondly, the specific activity of light production was seen to be maximal under low, growth-limiting concentrations of oxygen. Thirdly, unlike another luminous species (Beneckea harveyi), synthesis of the light production system of these bacteria is not catabolite repressed by glucose--a possible source of nutrition in the light organ. Fourthly, when grown aerobically on glucose these bacteria excrete pyruvic acid into the medium. This production of pyruvate is a major process, accounting for 30-40% of the glucose utilized and may serve as a form of regulatory and nutritional communication with the host.  (+info)

RecD function is required for high-pressure growth of a deep-sea bacterium. (5/222)

A genomic library derived from the deep-sea bacterium Photobacterium profundum SS9 was conjugally delivered into a previously isolated pressure-sensitive SS9 mutant, designated EC1002 (E. Chi and D. H. Bartlett, J. Bacteriol. 175:7533-7540, 1993), and exconjugants were screened for the ability to grow at 280-atm hydrostatic pressure. Several clones were identified that had restored high-pressure growth. The complementing DNA was localized and in all cases found to possess strong homology to recD, a DNA recombination and repair gene. EC1002 was found to be deficient in plasmid stability, a phenotype also seen in Escherichia coli recD mutants. The defect in EC1002 was localized to a point mutation that created a stop codon within the recD gene. Two additional recD mutants were constructed by gene disruption and were both found to possess a pressure-sensitive growth phenotype, although the magnitude of the defect depended on the extent of 3' truncation of the recD coding sequence. Surprisingly, the introduction of the SS9 recD gene into an E. coli recD mutant had two dramatic effects. At high pressure, SS9 recD enabled growth in the E. coli mutant strain under conditions of plasmid antibiotic resistance selection and prevented cell filamentation. Both of these effects were recessive to wild-type E. coli recD. These results suggest that the SS9 recD gene plays an essential role in SS9 growth at high pressure and that it may be possible to identify additional aspects of RecD function through the characterization of this activity.  (+info)

Vibrios associated with Litopenaeus vannamei larvae, postlarvae, broodstock, and hatchery probionts. (6/222)

Several bacteriological surveys were performed from 1994 to 1996 at different Litopenaeus vannamei hatcheries (in Ecuador) and shrimp farms (in Mexico). Samples were taken from routine productions of healthy and diseased L. vannamei larvae, postlarvae, and their culture environment and from healthy and diseased juveniles and broodstock. In Ecuador, the dominant bacterial flora associated with shrimp larvae showing symptoms of zoea 2 syndrome, mysis mold syndrome, and bolitas syndrome has been determined. Strains were characterized by Biolog metabolic fingerprinting and identified by comparison to a database of 850 Vibrio type and reference strains. A selection of strains was further genotypically fine typed by AFLP. Vibrio alginolyticus is predominantly present in all larval stages and is associated with healthy nauplius and zoea stages. AFLP genetic fingerprinting shows high genetic heterogeneity among V. alginolyticus strains, and the results suggest that putative probiotic and pathogenic strains each have specific genotypes. V. alginolyticus was found to be associated with larvae with the zoea 2 syndrome and the mysis mold syndrome, while different Vibrio species (V. alginolyticus and V. harveyi) are associated with the bolitas syndrome. V. harveyi is associated with diseased postlarvae, juveniles, and broodstock. The identities of the strains identified as V. harveyi by the Biolog system could not be unambiguously confirmed by AFLP genomic fingerprinting. Vibrio strain STD3-988 and one unidentified strain (STD3-959) are suspected pathogens of only juvenile and adult stages. V. parahaemolyticus, Photobacterium damselae, and V. mimicus are associated with juvenile and adult stages.  (+info)

16S rRNA gene sequence analysis of Photobacterium damselae and nested PCR method for rapid detection of the causative agent of fish pasteurellosis. (7/222)

The causative agent of fish pasteurellosis, the organism formerly known as Pasteurella piscicida, has been reclassified as Photobacterium damselae subsp. piscicida on the basis of 16S rRNA gene sequence comparisons and chromosomal DNA-DNA hybridization data; thus, this organism belongs to the same species as Photobacterium damselae subsp. damselae (formerly Vibrio damselae). Since reassignment of P. damselae subsp. piscicida was based on only two strains, one objective of the present work was to confirm the taxonomic position of this fish pathogen by sequencing the 16S rRNA genes of 26 strains having different geographic and host origins. In addition, a nested PCR protocol for detection of P. damselae based on 16S rRNA was developed. This PCR protocol was validated by testing 35 target and 24 nontarget pure cultures, and the detection limits obtained ranged from 1 pg to 10 fg of DNA (200 to 20 cells). A similar level of sensitivity was observed when the PCR protocol was applied to fish tissues spiked with bacteria. The PCR approach described in this paper allows detection of the pathogen in mixed plate cultures obtained from asymptomatic fish suspected to be carriers of P. damselae subsp. piscicida, in which growth of this bacterium cannot be visualized. Our results indicate that the selective primers which we designed represent a powerful tool for sensitive and specific detection of fish pasteurellosis.  (+info)

A study of deep-sea natural microbial populations and barophilic pure cultures using a high-pressure chemostat. (8/222)

Continuous cultures in which a high-pressure chemostat was used were employed to study the growth responses of (i) deep-sea microbial populations with the naturally occurring carbon available in seawater and with limiting concentrations of supplemental organic substrates and (ii) pure cultures of copiotrophic barophilic and barotolerant deep-sea isolates in the presence of limiting carbon concentrations at various pressures, dilution rates, and temperatures. We found that the growth rates of natural populations could not be measured or were extremely low (e.g., a doubling time of 629 h), as determined from the difference between the dilution rate and the washout rate. A low concentration of supplemental carbon (0.33 mg/liter) resulted in positive growth responses in the natural population, which resulted in an increase in the number of cells and eventually a steady population of cells. We found that the growth responses to imposed growth pressure by barophilic and barotolerant pure-culture isolates that were previously isolated and characterized under high-nutrient-concentration conditions were maintained under the low-nutrient-concentration limiting conditions (0.33 to 3.33 mg of C per liter) characteristic of the deep-sea environment. Our results indicate that deep-sea microbes can respond to small changes in substrate availability. Also, barophilic microbes that are copiotrophic as determined by their isolation in the presence of high carbon concentrations and their preference for high carbon concentrations are versatile and are able to compete and grow as barophiles in the low-carbon-concentration oligotrophic deep-sea environment in which they normally exist.  (+info)