Function of WW domains as phosphoserine- or phosphothreonine-binding modules. (1/597)

Protein-interacting modules help determine the specificity of signal transduction events, and protein phosphorylation can modulate the assembly of such modules into specific signaling complexes. Although phosphotyrosine-binding modules have been well-characterized, phosphoserine- or phosphothreonine-binding modules have not been described. WW domains are small protein modules found in various proteins that participate in cell signaling or regulation. WW domains of the essential mitotic prolyl isomerase Pin1 and the ubiquitin ligase Nedd4 bound to phosphoproteins, including physiological substrates of enzymes, in a phosphorylation-dependent manner. The Pin1 WW domain functioned as a phosphoserine- or phosphothreonine-binding module, with properties similar to those of SRC homology 2 domains. Phosphoserine- or phosphothreonine-binding activity was required for Pin1 to interact with its substrates in vitro and to perform its essential function in vivo.  (+info)

Correlations in palmitoylation and multiple phosphorylation of rat bradykinin B2 receptor in Chinese hamster ovary cells. (2/597)

Rat bradykinin B2 receptor from unstimulated Chinese hamster ovary cells transfected with the corresponding cDNA has been isolated, and subsequent mass spectrometric analysis of multiple phosphorylated species and of the palmitoylation attachment site is described. Bradykinin B2 receptor was isolated on oligo(dT)-cellulose using N-(epsilon-maleimidocaproyloxy)succinimide-Met-Lys-bradykinin coupled to a protected (dA)30-mer. This allowed a one-step isolation of the receptor on an oligo(dT)-cellulose column via variation solely of salt concentration. After enzymatic in-gel digestion, matrix-assisted laser desorption ionization and electrospray ion trap mass spectrometric analysis of the isolated rat bradykinin B2 receptor showed phosphorylation at Ser365, Ser371, Ser378, Ser380, and Thr374. Further phosphorylation at Tyr352 and Tyr161 was observed. Rat bradykinin receptor B2 receptor is also palmitoylated at Cys356. All of the phosphorylation sites except for Tyr161 cluster at the carboxyl-terminal domain of the receptor located on the cytoplasmic face of the cell membrane. Surprisingly, many of the post-translational modifications were shown by MSn mass spectroscopic analysis to be correlated pairwise, e.g. diphosphorylation at Ser365 and Ser371, at Ser378 and Ser380, and at Thr374 and Ser380 as well as mutually exclusive phosphorylation at Tyr352 and palmitoylation at Cys356. The last correlation may be involved in a receptor internalization motif. Pairwise correlations and mutual exclusion of phosphorylation and palmitoylation suggest critical roles of multiple post-translational modifications for the regulation of activity, coupling to intracelluar signaling pathways, and/or sequestration of the bradykinin receptor.  (+info)

Imaging protein kinase Calpha activation in cells. (3/597)

Spatially resolved fluorescence resonance energy transfer (FRET) measured by fluorescence lifetime imaging microscopy (FLIM), provides a method for tracing the catalytic activity of fluorescently tagged proteins inside live cell cultures and enables determination of the functional state of proteins in fixed cells and tissues. Here, a dynamic marker of protein kinase Calpha (PKCalpha) activation is identified and exploited. Activation of PKCalpha is detected through the binding of fluorescently tagged phosphorylation site-specific antibodies; the consequent FRET is measured through the donor fluorophore on PKCalpha by FLIM. This approach enabled the imaging of PKCalpha activation in live and fixed cultured cells and was also applied to pathological samples.  (+info)

Temporal activation of the sea urchin late H1 gene requires stage-specific phosphorylation of the embryonic transcription factor SSAP. (4/597)

Stage-specific activator protein (SSAP) is a 41-kDa polypeptide that binds to embryonic enhancer elements of the sea urchin late H1 gene. These enhancer elements mediate the transcriptional activation of the late H1 gene in a temporally specific manner at the mid-blastula stage of embryogenesis. Although SSAP can transactivate the late H1 gene only at late stages of the development, it resides in the sea urchin nucleus and maintains DNA binding activity throughout early embryogenesis. In addition, it has been shown that SSAP undergoes a conversion from a 41-kDa monomer to a approximately 80- to 100-kDa dimer when the late H1 gene is activated. We have demonstrated that SSAP is differentially phosphorylated during embryogenesis. Serine 87, a cyclic AMP-dependent protein kinase consensus site located in the N-terminal DNA binding domain, is constitutively phosphorylated. At the mid-blastula stage of embryogenesis, temporally correlated with SSAP dimer formation and late H1 gene activation, a threonine residue in the C-terminal transactivation domain is phosphorylated. This phosphorylation can be catalyzed by a break-ended double-stranded DNA-activated protein kinase activity from the sea urchin nucleus in vitro. Microinjection of synthetic SSAP mRNAs encoding either serine or threonine phosphorylation mutants results in the failure to transactivate reporter genes that contain the enhancer element, suggesting that both serine and threonine phosphorylation of SSAP are required for the activation of the late H1 gene. Furthermore, SSAP can undergo blastula-stage-specific homodimerization through its GQ-rich transactivation domain. The late-specific threonine phosphorylation in this domain is essential for the dimer assembly. These observations indicate that temporally regulated SSAP activation is promoted by threonine phosphorylation on its transactivation domain, which triggers the formation of a transcriptionally active SSAP homodimer.  (+info)

PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. (5/597)

BACKGROUND: Protein kinase B (PKB) is activated by phosphorylation of Thr308 and of Ser473. Thr308 is phosphorylated by the 3-phosphoinositide-dependent protein kinase-1 (PDK1) but the identity of the kinase that phosphorylates Ser473 (provisionally termed PDK2) is unknown. RESULTS: The kinase domain of PDK1 interacts with a region of protein kinase C-related kinase-2 (PRK2), termed the PDK1-interacting fragment (PIF). PIF is situated carboxy-terminal to the kinase domain of PRK2, and contains a consensus motif for phosphorylation by PDK2 similar to that found in PKBalpha, except that the residue equivalent to Ser473 is aspartic acid. Mutation of any of the conserved residues in the PDK2 motif of PIF prevented interaction of PIF with PDK1. Remarkably, interaction of PDK1 with PIF, or with a synthetic peptide encompassing the PDK2 consensus sequence of PIF, converted PDK1 from an enzyme that could phosphorylate only Thr308 of PKBalpha to one that phosphorylates both Thr308 and Ser473 of PKBalpha in a manner dependent on phosphatidylinositol (3,4,5) trisphosphate (PtdIns(3,4,5)P3). Furthermore, the interaction of PIF with PDK1 converted the PDK1 from a form that is not directly activated by PtdIns(3,4,5)P3 to a form that is activated threefold by PtdIns(3,4,5)P3. We have partially purified a kinase from brain extract that phosphorylates Ser473 of PKBalpha in a PtdIns(3,4,5)P3-dependent manner and that is immunoprecipitated with PDK1 antibodies. CONCLUSIONS: PDK1 and PDK2 might be the same enzyme, the substrate specificity and activity of PDK1 being regulated through its interaction with another protein(s). PRK2 is a probable substrate for PDK1.  (+info)

The N-terminal transactivation domain of ATF2 is a target for the co-operative activation of the c-jun promoter by p300 and 12S E1A. (6/597)

The adenovirus E1A proteins activate the c-jun promoter through two Jun/ATF-binding sites, jun1 and jun2. P300, a transcriptional coactivator of several AP1 and ATF transcription factors has been postulated to play a role in this activation. Here, we present evidence that p300 can control c-jun transcription by acting as a cofactor for ATF2: (1) Over-expression of p300 was found to stimulate c-jun transcription both in the presence and absence of E1A. (2) Like E1A, p300 activates the c-jun promoter through the junl and jun2 elements and preferentially activates the N-terminal domain of ATF2. (3) Co-immunoprecipitation assays of crude cell extracts indicate that endogenous p300/CBP(-like) proteins and ATF2 proteins are present in a multiprotein complex that can bind specifically to the jun2 element. We further demonstrate that the Stress-Activated-Protein-Kinase (SAPK) target sites of ATF2, Thr69 and Thr71 are not required for the formation of the p300/CBP-ATF2 multiprotein complex. These data indicate that E1A does not inhibit all transcription activation functions of p300, and, in fact, cooperates with p300 in the activation of the ATF2 N-terminus.  (+info)

Involvement of protein serine and threonine phosphorylation in human sperm capacitation. (7/597)

The involvement of serine and threonine phosphorylation in human sperm capacitation was investigated. Anti-phosphoserine monoclonal antibody (mAb) recognized six protein bands in the 43-55-kDa, 94 +/- 2-kDa, 110-kDa, and 190-kDa molecular regions, in addition to a faint band each in the 18-kDa and 35-kDa regions. Anti-phosphothreonine mAb recognized protein bands in six similar regions, except that the 18-kDa, 35-kDa, and 94 +/- 2-kDa protein bands were sharper and thicker, and an additional band was observed in the 110-kDa molecular region. In the 43-55-kDa molecular region, there was a well-characterized glycoprotein, designated fertilization antigen, that showed a further increase in serine/threonine phosphorylation after exposure to solubilized human zona pellucida. In a cell-free in vitro kinase assay carried out on beads or in solution, four to eight proteins belonging to similar molecular regions, namely 20 +/- 2 kDa, 43-55 kDa, 94 +/- 2 kDa, and 110 +/- 10 kDa, as well as in 80 +/- 4 and 210 +/- 10 kDa regions, were phosphorylated at dual residues (serine/tyrosine and threonine/tyrosine). Capacitation increased the intensity of serine/threonine phosphorylation per sperm cell, increased the number of sperm cells that were phosphorylated, and induced a subcellular shift in the serine/threonine-specific fluorescence. These findings indicate that protein serine/threonine phosphorylation is involved and may have a physiological role in sperm capacitation.  (+info)

Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. (8/597)

Protein kinase B lies "downstream" of phosphatidylinositide (PtdIns) 3-kinase and is thought to mediate many of the intracellular actions of insulin and other growth factors. Here we show that FKHR, a human homologue of the DAF16 transcription factor in Caenorhabditis elegans, is rapidly phosphorylated by human protein kinase Balpha (PKBalpha) at Thr-24, Ser-256, and Ser-319 in vitro and at a much faster rate than BAD, which is thought to be a physiological substrate for PKB. The same three sites, which all lie in the canonical PKB consensus sequences (Arg-Xaa-Arg-Xaa-Xaa-(Ser/Thr)), became phosphorylated when FKHR was cotransfected with either PKB or PDK1 (an upstream activator of PKB). All three residues became phosphorylated when 293 cells were stimulated with insulin-like growth factor 1 (IGF-1). The IGF-1-induced phosphorylation was abolished by the PtdIns 3-kinase inhibitor wortmannin but not by PD 98059 (an inhibitor of the mitogen-activated protein kinase cascade) or by rapamycin. These results indicate that FKHR is a physiological substrate of PKB and that it may mediate some of the physiological effects of PKB on gene expression. DAF16 is known to be a component of a signaling pathway that has been partially dissected genetically and includes homologues of the insulin/IGF-1 receptor, PtdIns 3-kinase and PKB. The conservation of Thr-24, Ser-256, and Ser-319 and the sequences surrounding them in DAF16 therefore suggests that DAF16 is also a direct substrate for PKB in C. elegans.  (+info)