(1/4303) Phenotypic analysis of human glioma cells expressing the MMAC1 tumor suppressor phosphatase.

MMAC1, also known as PTEN or TEP-1, was recently identified as a gene commonly mutated in a variety of human neoplasias. Sequence analysis revealed that MMAC1 harbored sequences similar to those found in several protein phosphatases. Subsequent studies demonstrated that MMAC1 possessed in vitro enzymatic activity similar to that exhibited by dual specificity phosphatases. To characterize the potential cellular functions of MMAC1, we expressed wild-type and several mutant variants of MMAC1 in the human glioma cell line, U373, that lacks endogenous expression. While expression of wild-type MMAC1 in these cells significantly reduced their growth rate and saturation density, expression of enzymatically inactive MMAC1 significantly enhanced growth in soft agar. Our observations indicate that while wild-type MMAC1 exhibits activities compatible with its proposed role as a tumor suppressor, cellular expression of MMAC1 containing mutations in the catalytic domain may yield protein products that enhance transformation characteristics.  (+info)

(2/4303) Molecular cloning of a cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from liver of Sparus aurata: nutritional regulation of enzyme expression.

A cDNA clone encoding full-length 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2, 6-P2ase) was isolated and sequenced from a Sparus aurata liver cDNA library. The 2527 bp nucleotide sequence of the cDNA contains a 73 bp 5'-untranslated region (5'-UTR), an open reading frame that encodes a 469 amino acid protein and 1041 bp at the 3'-UTR. The deduced amino acid sequence is the first inferred 6PF-2-K/Fru-2, 6-P2ase in fish. The kinase and bisphosphatase domains, where the residues described as crucial for the mechanism of reaction of the bifunctional enzyme are located, present a high degree of homology with other liver isoenzymes. However, within the first 30 amino acids at the N-terminal regulatory domain of the fish enzyme a low homology is found. Nutritional regulation of the 6-phosphofructo-2-kinase activity, together with immunodetectable protein and mRNA levels of 6PF-2-K/Fru-2,6-P2ase, was observed after starvation and refeeding. In contrast to results previously described for rat liver, the decrease in immunodetectable protein and kinase activity caused by starvation was associated in the teleostean fish to a decrease in mRNA levels.  (+info)

(3/4303) Regulation of 2-carboxy-D-arabinitol 1-phosphate phosphatase: activation by glutathione and interaction with thiol reagents.

2-Carboxy-D-arabinitol 1-phosphate (CA1P) phosphatase de- grades CA1P, an inhibitor associated with the regulation of ribulose bisphosphate carboxylase/oxygenase in numerous plant species. CA1P phosphatase purified from Phaseolus vulgaris was partially inactivated by oxidizing conditions during dialysis in air-equilibrated buffer. Phosphatase activity could then be stimulated 1.3-fold by dithiothreitol and also by addition of reduced thioredoxin from Escherichia coli. These effects were enhanced synergistically by the positive effector, fructose 1, 6-bisphosphate (FBP). Most notably, CA1P phosphatase activity was stimulated up to 35-fold by glutathione, and was sensitive to the ratio of reduced (GSH) to oxidized (GSSG) forms. At concentrations of glutathione approximating measured levels in chloroplasts of P. vulgaris (5 mM total S), CA1P phosphatase exhibited >20-fold stimulation by a change in the redox status of glutathione from 60 to 100% GSH. This stimulation was augmented further by reduced E. coli thioredoxin. In contrast, FBP, which activates CA1P phosphatase under reducing conditions, was strongly inhibitory in the presence of GSSG. We propose that glutathione may have an appreciable role in the light/dark regulation of CA1P phosphatase in vivo. A model for the reversible activation of CA1P phosphatase by GSH was derived based upon the various responses of the enzyme's activity to a range of thiol reagents including N-ethylmaleimide, 5, 5'-dithiobis-(2-nitrobenzoic acid) and arsenite. These data indicate that the bean enzyme contains two physically distinct sets of thiol groups that are critical to its redox regulation.  (+info)

(4/4303) Polymorphisms in PTEN in breast cancer families.

Germline mutations in PTEN are the underlying genetic defect in Cowden disease, which is associated with a lifetime risk of 25-50% of developing breast cancer. To investigate the role of PTEN in inherited breast cancer in the absence of manifestations of Cowden disease, we screened 177 unrelated subjects with breast cancer who also had a family history of breast cancer in at least one relative. We found no disease associated PTEN mutations in this cohort, supporting previous studies suggesting that PTEN mutations do not contribute to inherited susceptibility to breast cancer without associated manifestations of Cowden disease. We did identify an association between a common polymorphism in intron 4 and lower mean age of diagnosis of breast cancer. While preliminary, these findings suggest that further study is warranted to determine whether this allelic variant of PTEN could function as a low penetrance breast cancer susceptibility allele.  (+info)

(5/4303) Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C.

Neuronal nicotinic acetylcholine receptor (nAChR) desensitization is hypothesized to be a trigger for long-term changes in receptor number and function observed after chronic administration of nicotine at levels similar to those found in persons who use tobacco. Factors that regulate desensitization could potentially influence the outcome of long-lasting exposure to nicotine. The roles of Ca2+ and protein kinase C (PKC) on desensitization of alpha4beta2 nAChRs expressed in Xenopus laevis oocytes were investigated. Nicotine-induced (300 nM; 30 min) desensitization of alpha4beta2 receptors in the presence of Ca2+ developed in a biphasic manner with fast and slow exponential time constants of tauf = 1.4 min (65% relative amplitude) and taus = 17 min, respectively. Recovery from desensitization was reasonably well described by a single exponential with taurec = 43 min. Recovery was largely eliminated after replacement of external Ca2+ with Ba2+ and slowed by calphostin C (taurec = 48 min), an inhibitor of PKC. Conversely, the rate of recovery was enhanced by phorbol-12-myristate-13-acetate (taurec = 14 min), a PKC activator, or by cyclosporin A (with taurec = 8 min), a phosphatase inhibitor. alpha4beta2 receptors containing a mutant alpha4 subunit that lacks a consensus PKC phosphorylation site exhibited little recovery from desensitization. Based on a two-desensitized-state cyclical model, it is proposed that after prolonged nicotine treatment, alpha4beta2 nAChRs accumulate in a "deep" desensitized state, from which recovery is very slow. We suggest that PKC-dependent phosphorylation of alpha4 subunits changes the rates governing the transitions from "deep" to "shallow" desensitized conformations and effectively increases the overall rate of recovery from desensitization. Long-lasting dephosphorylation may underlie the "permanent" inactivation of alpha4beta2 receptors observed after chronic nicotine treatment.  (+info)

(6/4303) Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway.

PTEN/MMAC1 is a tumor suppressor gene located on chromosome 10q23. Inherited PTEN/MMAC1 mutations are associated with a cancer predisposition syndrome known as Cowden's disease. Somatic mutation of PTEN has been found in a number of malignancies, including glioblastoma, melanoma, and carcinoma of the prostate and endometrium. The protein product (PTEN) encodes a dual-specificity protein phosphatase and in addition can dephosphorylate certain lipid substrates. Herein, we show that PTEN protein induces a G1 block when reconstituted in PTEN-null cells. A PTEN mutant associated with Cowden's disease (PTEN;G129E) has protein phosphatase activity yet is defective in dephosphorylating inositol 1,3,4,5-tetrakisphosphate in vitro and fails to arrest cells in G1. These data suggest a link between induction of a cell-cycle block by PTEN and its ability to dephosphorylate, in vivo, phosphatidylinositol 3,4,5-trisphosphate. In keeping with this notion, PTEN can inhibit the phosphatidylinositol 3,4, 5-trisphosphate-dependent Akt kinase, a downstream target of phosphatidylinositol 3-kinase, and constitutively active, but not wild-type, Akt overrides a PTEN G1 arrest. Finally, tumor cells lacking PTEN contain high levels of activated Akt, suggesting that PTEN is necessary for the appropriate regulation of the phosphatidylinositol 3-kinase/Akt pathway.  (+info)

(7/4303) The SH2 domain-containing inositol 5'-phosphatase (SHIP) recruits the p85 subunit of phosphoinositide 3-kinase during FcgammaRIIb1-mediated inhibition of B cell receptor signaling.

Coligation of FcgammaRIIb1 with the B cell receptor (BCR) or FcepsilonRI on mast cells inhibits B cell or mast cell activation. Activity of the inositol phosphatase SHIP is required for this negative signal. In vitro, SHIP catalyzes the conversion of the phosphoinositide 3-kinase (PI3K) product phosphatidylinositol 3,4, 5-trisphosphate (PIP3) into phosphatidylinositol 3,4-bisphosphate. Recent data demonstrate that coligation of FcgammaRIIb1 with BCR inhibits PIP3-dependent Btk (Bruton's tyrosine kinase) activation and the Btk-dependent generation of inositol trisphosphate that regulates sustained calcium influx. In this study, we provide evidence that coligation of FcgammaRIIb1 with BCR induces binding of PI3K to SHIP. This interaction is mediated by the binding of the SH2 domains of the p85 subunit of PI3K to a tyrosine-based motif in the C-terminal region of SHIP. Furthermore, the generation of phosphatidylinositol 3,4-bisphosphate was only partially reduced during coligation of BCR with FcgammaRIIb1 despite a drastic reduction in PIP3. In contrast to the complete inhibition of Tec kinase-dependent calcium signaling, activation of the serine/threonine kinase Akt was partially preserved during BCR and FcgammaRIIb1 coligation. The association of PI3K with SHIP may serve to activate PI3K and to regulate downstream events such as B cell activation-induced apoptosis.  (+info)

(8/4303) A novel spliced form of SH2-containing inositol phosphatase is expressed during myeloid development.

SH2-containing Inositol Phosphatase (SHIP) is a 145 kD protein expressed in hematopoietic cells. SHIP is phosphorylated on tyrosine after receptor binding by several cytokines and has a negative role in hematopoiesis. We cloned a murine complementary DNA (cDNA) sequence for an isoform of SHIP with an internal 183 nucleotide deletion, encoding a protein 61 amino acids shorter than 145 kD SHIP. This deletion eliminates potential SH3-domain binding regions and a potential binding site for the p85 subunit of Phosphatidylinositol 3-Kinase. Using polyclonal anti-SHIP antibodies, we and others have previously observed a 135 kD SHIP isoform that is coexpressed with 145 kD SHIP. Here, we used monoclonal antibodies raised against the region deleted in the spliced form to show that the product of the novel spliced SHIP cDNA is antigenically identical to the 135 kD SHIP isoform. Like 145 kD SHIP, 135 kD SHIP expression was induced on differentiation of bone marrow cells. After macrophage colony-stimulating factor (M-CSF) stimulation of FDC-P1(Fms) myeloid cells, both 145 and 135 kD SHIP forms were tyrosine phosphorylated and could be coimmunoprecipitated with antibodies to Shc and Grb2. However, experiments showed only a weak association of 135 kD SHIP with p85. A potentially analogous 135 kD SHIP species also appears in human differentiated leukocytes.  (+info)