Combinatorial protein engineering by incremental truncation. (1/84)

We have developed a combinatorial approach, using incremental truncation libraries of overlapping N- and C-terminal gene fragments, that examines all possible bisection points within a given region of an enzyme that will allow the conversion of a monomeric enzyme into its functional heterodimer. This general method for enzyme bisection will have broad applications in the engineering of new catalytic functions through domain swapping and chemical synthesis of modified peptide fragments and in the study of enzyme evolution and protein folding. We have tested this methodology on Escherichia coli glycinamide ribonucleotide formyltransferase (PurN) and, by genetic selection, identified PurN heterodimers capable of glycinamide ribonucleotide transformylation. Two were chosen for physical characterization and were found to be comparable to the wild-type PurN monomer in terms of stability to denaturation, activity, and binding of substrate and cofactor. Sequence analysis of 18 randomly chosen, active PurN heterodimers revealed that the breakpoints primarily clustered in loops near the surface of the enzyme, that the breaks could result in the deletion of highly conserved residues and, most surprisingly, that the active site could be bisected.  (+info)

Improvement in the efficiency of formyl transfer of a GAR transformylase hybrid enzyme. (2/84)

A hybrid glycinamide ribonucleotide transformylase was assembled from two protein domains that were treated as discrete modules. One module contained the ribonucleotide binding domain from the purN glycinamide ribonucleotide transformylase; the second module contained the catalytic machinery and the formyl tetrahydrofolate binding domain from the enzyme encoded by purU, formyl tetrahydrofolate hydrolase. The resultant enzyme showed 0.1% catalytic activity of the wild-type glycinamide ribonucleotide transformylase enzyme but had a formyl transfer efficiency of 10%. A combinatorial mutagenesis approach was used to improve the solubility and formyl transfer properties of the hybrid enzyme. The mutagenized hybrid glycinamide ribonucleotide transformylase was initially expressed as a fusion to the alpha-peptide of beta-galactosidase. Clones were selected for improvement in solubility by determining which clones were capable of alpha-complementation using a blue/white screen. One clone was further characterized and found to have an improved efficiency of transfer of the ribonucleotide increasing this property to >95%.  (+info)

Pharmacokinetic and pharmacodynamic evaluation of the glycinamide ribonucleotide formyltransferase inhibitor AG2034. (3/84)

Glycinamide ribonucleotide formyltransferase (GARFT) is a component of the de novo purine synthesis pathway. AG2034 is a specific inhibitor of GARFT that was designed based on the GARFT crystal structure. In conjunction with Phase I studies at four clinical centers in the United States and United Kingdom, AG2034 pharmacology was evaluated in 54 patients receiving 1-11 mg/m2 AG2034 as a 2-5 min injection. Blood samples were obtained just prior to and 5, 15, 30, and 45 min, and 1, 1.5, 2, 4, 6, 8, 12, 24, 48, 72, and 96 h after bolus injection during course 1. Limited sampling was also performed on course 3. Plasma AG2034 was measured using a sensitive and reproducible ELISA assay. AG2034 demonstrated a trimodal elimination pattern over 24 h, with median half-life (t(1/2))alpha = 8.7 min, t(1/2)beta = 72.6 min, and t(1/2)gamma = 364.2 min. AG2034 systemic clearance ranged from 9.4-144.5 ml/min/m2, and volume of distribution was 1.2-7.6 liters/m2. Course 1 AG2034 area under the concentration versus time curve (AUC) had a linear relationship with dose (r(s) = 0.86). Accumulation of AG2034 was evident, because course 3 AUC was higher than course 1 in 23 of 23 evaluable patients, but was not associated with an increase in erythrocyte AG2034. AG2034 systemic exposure had an impact on toxicity, because course 1 and course 3 AG2034 AUCs were significantly higher for patients with grade III/IV toxicity than patients with less than grade II toxicity (P < 0.001 and P = 0.001 for course 1 and course 3, respectively). This study demonstrates rapid systemic clearance of AG2034 and suggests pharmacokinetic approaches that may minimize patient toxicity and aid the development of this interesting class of anticancer agents.  (+info)

Rapid generation of incremental truncation libraries for protein engineering using alpha-phosphothioate nucleotides. (4/84)

Incremental truncation for the creation of hybrid enzymes (ITCHY) is a novel tool for the generation of combinatorial libraries of hybrid proteins independent of DNA sequence homology. We herein report a fundamentally different methodology for creating incremental truncation libraries using nucleotide triphosphate analogs. Central to the method is the polymerase catalyzed, low frequency, random incorporation of alpha-phosphothioate dNTPs into the region of DNA targeted for truncation. The resulting phosphothioate internucleotide linkages are resistant to 3'-->5' exonuclease hydrolysis, rendering the target DNA resistant to degradation in a subsequent exonuclease III treatment. From an experimental perspective the protocol reported here to create incremental truncation libraries is simpler and less time consuming than previous approaches by combining the two gene fragments in a single vector and eliminating additional purification steps. As proof of principle, an incremental truncation library of fusions between the N-terminal fragment of Escherichia coli glycinamide ribonucleotide formyltransferase (PurN) and the C-terminal fragment of human glycinamide ribonucleotide formyltransferase (hGART) was prepared and successfully tested for functional hybrids in an auxotrophic E.coli host strain. Multiple active hybrid enzymes were identified, including ones fused in regions of low sequence homology.  (+info)

Localization of GAR transformylase in Escherichia coli and mammalian cells. (5/84)

Enzymes of the de novo purine biosynthetic pathway may form a multienzyme complex to facilitate substrate flux through the ten serial steps constituting the pathway. One likely strategy for complex formation is the use of a structural scaffold such as the cytoskeletal network or subcellular membrane of the cell to mediate protein-protein interactions. To ascertain whether this strategy pertains to the de novo purine enzymes, the localization pattern of the third purine enzyme, glycinamide ribonucleotide transformylase (GAR Tfase) was monitored in live Escherichia coli and mammalian cells. Genes encoding human as well as E. coli GAR Tfase fused with green fluorescent protein (GFP) were introduced into their respective cells with regulated expression of proteins and localization patterns monitored by using confocal fluorescence microscopy. In both instances images showed proteins to be diffused throughout the cytoplasm. Thus, GAR Tfase is not localized to an existing cellular architecture, so this device is probably not used to concentrate the members of the pathway. However, discrete clusters of the pathway may still exist throughout the cytoplasm.  (+info)

Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. (6/84)

Fluorescent pseudomonads produce yellow-green siderophores when grown under conditions of iron starvation. Here, the characterization of the pvdF gene, which is required for synthesis of the siderophore pyoverdine by Pseudomonas aeruginosa strain PAO1, is described. A P. aeruginosa pvdF mutant was constructed and found to be defective for production of pyoverdine, demonstrating the involvement of PvdF in pyoverdine synthesis. Transcription analysis showed that expression of pvdF was regulated by the amount of iron in the growth medium, consistent with its role in siderophore production. DNA sequencing showed that pvdF gives rise to a protein of 31 kDa that has similarity with glycinamide ribonucleotide transformylase (GART) enzymes involved in purine synthesis from a wide range of eukaryotic and prokaryotic species. Chemical analyses of extracts from wild-type and pvdF mutant bacteria indicated that the PvdF enzyme catalyses the formylation of N(5)-hydroxyornithine to give rise to N(5)-formyl-N(5)-hydroxyornithine, a component of pyoverdine. These studies enhance understanding of the enzymology of pyoverdine synthesis, and to the best of the authors' knowledge provide the first example of involvement of a GART-type enzyme in synthesis of a secondary metabolite.  (+info)

Creating multiple-crossover DNA libraries independent of sequence identity. (7/84)

We have developed, experimentally implemented, and modeled in silico a methodology named SCRATCHY that enables the combinatorial engineering of target proteins, independent of sequence identity. The approach combines two methods for recombining genes: incremental truncation for the creation of hybrid enzymes and DNA shuffling. First, incremental truncation for the creation of hybrid enzymes is used to create a comprehensive set of fusions between fragments of genes in a DNA homology-independent fashion. This artificial family is then subjected to a DNA-shuffling step to augment the number of crossovers. SCRATCHY libraries were created from the glycinamide-ribonucleotide formyltransferase (GART) genes from Escherichia coli (purN) and human (hGART). The developed modeling framework eSCRATCHY provides insight into the effect of sequence identity and fragmentation length on crossover statistics and draws contrast with DNA shuffling. Sequence analysis of the naive shuffled library identified members with up to three crossovers, and modeling predictions are in good agreement with the experimental findings. Subsequent in vivo selection in an auxotrophic E. coli host yielded functional hybrid enzymes containing multiple crossovers.  (+info)

Native-state conformational dynamics of GART: a regulatory pH-dependent coil-helix transition examined by electrostatic calculations. (8/84)

Glycinamide ribonucleotide transformylase (GART) undergoes a pH-dependent coil-helix transition with pK(a) approximately 7. An alpha-helix is formed at high pH spanning 8 residues of a 21-residue-long loop, comprising the segment Thr120-His121-Arg122-Gln123-Ala124-Leu125-Glu126-Asn127. To understand the electrostatic nature of this loop-helix, called the activation loop-helix, which leads to the formation and stability of the alpha-helix, pK(a) values of all ionizable residues of GART have been calculated, using Poisson-Boltzmann electrostatic calculations and crystallographic data. Crystallographic structures of high and low pH E70A GART have been used in our analysis. Low pK(a) values of 5.3, 5.3, 3.9, 1.7, and 4.7 have been calculated for five functionally important histidines, His108, His119, His121, His132, and His137, respectively, using the high pH E70A GART structure. Ten theoretical single and double mutants of the high pH E70A structure have been constructed to identify pairwise interactions of ionizable residues, which have aided in elucidating the multiplicity of electrostatic interactions of the activation loop-helix, and the impact of the activation helix on the catalytic site. Based on our pK(a) calculations and structural data, we propose that: (1) His121 forms a molecular switch for the coil-helix transition of the activation helix, depending on its protonation state; (2) a strong electrostatic interaction between His132 and His121 is observed, which can be of stabilizing or destabilizing nature for the activation helix, depending on the relative orientation and protonation states of the rings of His121 and His132; (3) electrostatic interactions involving His119 and Arg122 play a role in the stability of the activation helix; and (4) the activation helix contains the helix-promoting sequence Arg122-Gln123-Ala124-Leu125-Glu126, but its alignment relative to the N and C termini of the helix is not optimal, and is possibly of a destabilizing nature. Finally, we provide electrostatic evidence that the formation and closure of the activation helix create a hydrophobic environment for catalytic-site residue His108, to facilitate catalysis.  (+info)