A short loop on the ALK-2 and ALK-4 activin receptors regulates signaling specificity but cannot account for all their effects on early Xenopus development. (57/18461)

Activin, a member of the transforming growth factor beta (TGF-beta) superfamily, signals through a heteromeric complex of type I and type II serine-threonine kinase receptors. The two activin type I receptors previously identified, ALK-2 (ActR-I) and ALK-4 (ActR-IB), have distinct effects on gene expression, differentiation and morphogenesis in the Xenopus animal cap assay. ALK-4 reproduces the effects of activin treatment including the dose-dependent induction of progressively more dorso-anterior mesodermal and endodermal markers, whereas ALK-2 induces only ventral mesodermal markers and counteracts the effects of ALK-4. To identify regions of the receptors that determine signaling specificity we have generated chimeras of the constitutively active ALK-2 and ALK-4 receptors (termed ALK-2* and ALK-4*). The effects of these chimeric receptors on gene expression and morphogenetic movements implicate the loop between kinase subdomains IV and V in mediating the strong dorsal gene-inducing properties of ALK-4*; when the seven amino acids comprising this loop are transferred from ALK-4* to ALK-2*, the resulting chimeric receptor is capable of inducing the expression of dorsal-specific genes. In contrast, when the equivalent region of ALK-2* is transferred to the ALK-4* backbone it cannot effectively counteract the dorsalizing effects of ALK-4*, suggesting that other regions of type I receptors are also involved in determining signal specificity.  (+info)

Multiple developmental roles for CRAC, a cytosolic regulator of adenylyl cyclase. (58/18461)

Receptor-mediated activation of adenylyl cyclase (ACA) in Dictyostelium requires CRAC protein. Upon translocation to the membrane, this pleckstrin homology (PH) domain protein stimulates ACA and thereby mediates developmental aggregation. CRAC may also have roles later in development since CRAC-null cells can respond to chemotactic signals and participate in developmental aggregation when admixed with wild-type cells, but they do not complete development within such chimeras. To test whether the role of CRAC in postaggregative development is related to the activation of ACA, chemotactic aggregation was bypassed in CRAC-null cells by activating the cAMP-dependent protein kinase (PKA). While such strains formed mounds, they did not complete fruiting body morphogenesis or form spores. Expression of CRAC in the prespore cells of these strains rescued sporulation and fruiting body formation. This later function of CRAC does not appear to require its PH domain since the C-terminal portion of the protein (CRAC-DeltaPH) can substitute for full-length CRAC in promoting spore cell formation and morphogenesis. No detectable ACA activation was observed in any of the CRAC-null strains rescued by PKA activation and expression of CRAC-DeltaPH. Finally, we found that the development of CRAC-null ACA-null double mutants could be rescued by the activation of PKA together with the expression of CRAC-DeltaPH. Thus, there appears to be a required function for CRAC in postaggregative development that is independent of its previously described function in the ACA activation pathway.  (+info)

Hoxa5 gene regulation: A gradient of binding activity to a brachial spinal cord element. (59/18461)

The Hox genes cooperate in providing positional information needed for spatial and temporal patterning of the vertebrate body axis. However, the biological mechanisms behind spatial Hox expression are largely unknown. In transgenic mice, gene fusions between Hoxa5 (previously called Hox-1.3) 5' flanking regions and the lacZ reporter gene show tissue- and time-specific expression in the brachial spinal cord in day 11-13 embryos. A 604-bp regulatory region with enhancer properties directs this spatially specific expression. Fine-detail mapping of the enhancer has identified several elements involved in region-specific expression, including an element required for expression in the brachial spinal cord. Factors in embryonic day 12.5 nuclear extracts bind this element in electrophoretic mobility shift assays (EMSA) and protect three regions from DNase digestion. All three sites contain an AAATAA sequence and mutations at these sites reduce or abolish binding. Furthermore, this element binds specific individual embryonic proteins on a protein blot. The binding activity appears as a gradient along the anterior-posterior axis with two- to threefold higher levels observed in extracts from anterior regions than from posterior regions. In parallel with the EMSA, the proteins on the protein blot also show reduced binding to probes with mutations at the AAATAA sites. Most importantly, transgenic mice carrying Hoxa5/lacZ fusions with the three AAATAA sites mutated either do not express the transgene or have altered transgene expression. The brachial spinal cord element and its binding proteins are likely to be involved in spatial expression of Hoxa5 during development.  (+info)

Immunoreactive pancreatic Reg protein in sera from cystic fibrosis patients with and without pancreatic insufficiency. (60/18461)

BACKGROUND: The biological function of the Reg protein, a non-enzymic protein produced in fairly large amounts by pancreatic acinar cells, remains elusive. Its susceptibility to proteolysis leading to precipitation of the proteolysis product at neutral pH suggests that it could contribute to the protein plugging observed in cystic fibrosis (CF). AIMS: To study its behaviour in the serum of CF patients with or without pancreatic insufficiency and to compare it with that of other pancreatic secretory proteins. PATIENTS: 170 patients (93 with CF, 55 controls, and 22 with chronic pancreatitis) were studied. METHODS: Reg protein was measured using a specific enzyme immunoassay and its molecular form in CF sera was characterised by gel filtration. Molecular gene expression was investigated by dot-blot hybridisation. RESULTS: Reg protein was present in all CF sera studied from patients with or without pancreatic insufficiency, and in all cases the level was significantly higher than in controls. Its chromatographic behaviour in CF sera was identical with that of the protein present in normal serum. No correlation was found between the levels of Reg protein and trypsin(ogen) (or lipase) in CF, nor in control sera or normal pancreatic juice. Molecular gene expression of the corresponding proteins investigated in pancreatic tissues showed an absence of correlation between the mRNA levels. CONCLUSIONS: Reg protein may not be a secretory exocrine protein like the digestive enzymes but rather a hormone-like secretory substance with an endocrine or paracrine function.  (+info)

Cyclosporine-induced renal artery smooth muscle contraction is associated with increases in the phosphorylation of specific contractile regulatory proteins. (61/18461)

Cyclosporine A (CSA) is a type 2B phosphatase inhibitor which can induce contraction of renal artery smooth muscle. In this investigation, we examined the phosphorylation events associated with CSA-induced contraction of bovine renal artery smooth muscle. Contractile responses were determined in a muscle bath and the corresponding phosphorylation events were determined with whole cell phosphorylation and two-dimensional gel electrophoresis. CSA-induced contractions were associated with increases in the phosphorylation of the 20 kDa myosin light chains (MLC20) and different isoforms of the small heat shock protein, HSP27. Cyclic nucleotide-dependent relaxation of CSA-induced contractions was associated with increases in the phosphorylation of another small heat shock protein, HSP20, and decreases in the phosphorylation of the MLC20, and some isoforms of HSP27. These data suggest that CSA-induced contraction and relaxation of vascular smooth muscle is associated with increases in the phosphorylation of specific contractile regulatory proteins.  (+info)

Serine-arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing. (62/18461)

Two distinct functions have been proposed for the serine-arginine (SR)-rich family of splicing factors. First, SR proteins are essential splicing factors and are thought to function by mediating protein-protein interactions within the intron during spliceosome assembly. Second, SR proteins bind to exonic enhancer sequences and recruit spliceosome components to adjacent introns. The latter activity is required for splice-site recognition and alternative splicing. Until now it has not been possible to determine whether the requirement for SR proteins in the basic splicing reaction is a secondary consequence of their exon-dependent recruitment function. Here we show that RNA substrates containing only 1 nt of exon sequence can undergo the first step of the splicing reaction in vitro and that this activity requires SR proteins. Thus, we provide direct evidence that SR proteins have both exon-independent and exon-dependent functions in pre-mRNA splicing.  (+info)

Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. (63/18461)

Mice deficient in C/EBP alpha have defective development of adipose tissue, but the precise role of C/EBP alpha has not been defined. Fibroblasts from C/EBP alpha(-/-) mice undergo adipose differentiation through expression and activation of PPAR gamma, though several clear defects are apparent. C/EBP alpha-deficient adipocytes accumulates less lipid, and they do not induce endogenous PPAR gamma, indicating that cross-regulation between C/EBP alpha and PPAR gamma is important in maintaining the differentiated state. The cells also show a complete absence of insulin-stimulated glucose transport, secondary to reduced gene expression and tyrosine phosphorylation for the insulin receptor and IRS-1. These results define multiple roles for C/EBP alpha in adipogenesis and show that cross-regulation between PPAR gamma and C/EBP alpha is a key component of the transcriptional control of this cell lineage.  (+info)

Exclusion of insulin receptor substrate 2 (IRS-2) as a major locus for early-onset autosomal dominant type 2 diabetes. (64/18461)

We investigated whether variability at the insulin receptor substrate (IRS)-2 locus plays a role in the etiology of early-onset autosomal dominant type 2 diabetes. By means of radiation hybrid mapping, we placed the human IRS-2 gene on 13q at 8.6 cRays from SHGC-37358. Linkage between diabetes and two polymorphic markers located in this region (D13S285 and D13S1295) was then evaluated in 29 families with early-onset autosomal dominant type 2 diabetes. Included were 220 individuals with diabetes, impaired glucose tolerance, or gestational diabetes (mean age at diabetes diagnosis 36 +/- 17 years) and 146 nondiabetic subjects. Overall, strongly negative logarithm of odds (LOD) scores for linkage with diabetes were obtained by multipoint parametric analysis (LOD score -45.4 at D13S285 and -40.9 at D13S1295). No significant evidence of linkage was obtained under the hypothesis of heterogeneity or by nonparametric methods. Fourteen pedigrees for which linkage could not be excluded (LOD score > -2.0) were screened for mutations in the IRS-2 coding region by dideoxy fingerprinting. However, no mutations segregating with diabetes could be detected in these families. These data indicate that IRS-2 is not a major gene for early-onset autosomal dominant type 2 diabetes, although a role of mutations in the promoter region cannot be excluded at this time.  (+info)