IL-10-induced anergy in peripheral T cell and reactivation by microenvironmental cytokines: two key steps in specific immunotherapy. (25/3436)

Specific immunotherapy (SIT) is widely used for treatment of allergic diseases and could potentially be applied in other immunological disorders. Induction of specific unresponsiveness (anergy) in peripheral T cells and recovery by cytokines from the tissue microenvironment represent two key steps in SIT with whole allergen or antigenic T cell peptides (PIT). The anergy is directed against the T cell epitopes of the respective antigen and characterized by suppressed proliferative and cytokine responses. It is initiated by autocrine action of IL-10, which is increasingly produced by the antigen-specific T cells. Later in therapy, B cells and monocytes also produce IL-10. The anergic T cells can be reactivated by different cytokines. Whereas IL-15 and IL-2 generate Th1 cytokine profile and an IgG4 antibody response, IL-4 reactivates a Th2 cytokine pattern and IgE antibodies. Increased IL-10 suppresses IgE and enhances IgG4 synthesis, resulting in a decreased antigen-specific IgE:IgG4 ratio, as observed normally in patients after SIT or PIT. The same state of anergy against the major bee venom allergen, phospholipase A2, can be observed in subjects naturally anergized after multiple bee stings. Together, these data demonstrate the pivotal role of autocrine IL-10 in induction of specific T cell anergy and the important participation of the cytokine microenvironment in SIT. Furthermore, knowledge of the mechanisms explaining reasons for success or failure of SIT may enable possible predictive measures of the treatment.  (+info)

Differential potentiation of arachidonic acid release by rat alpha2 adrenergic receptor subtypes. (26/3436)

CHO transfectants expressing the three subtypes of rat alpha2 adrenergic receptors (alpha2AR): alpha2D, alpha2B, alpha2C were studied to compare the transduction pathways leading to the receptor-mediated stimulation of phospholipase A2 (PLA2) in the corresponding cell lines CHO-2D, CHO-2B, CHO-2C. The alpha2B subtype stimulated the arachidonic acid (AA) release after incubation of the cells with 1 microM epinephrine, whereas alpha2D and alpha2C gave no stimulation. Calcium ionophore A23187 (1 microM) increased the release by a factor of 2-4 in the three strains. When cells were incubated with both epinephrine and Ca2+ ionophore, the AA release differed greatly between cell lines with strong potentiation in CHO-2B (2-3 times greater than Ca2+ ionophore alone), moderate potentiation in CHO-2D, and no potentiation in CHO-2C. The three cell lines each inhibited adenylylcyclase with similar efficiencies when 1 microM epinephrine was used as the agonist. The potentiation depended on both alpha2AR and Gi proteins since yohimbine and pertussis toxin inhibited the process. Pretreatment of CHO-2B cells with MAFP which inhibits both cytosolic and Ca2+-independent PLA2, reduced the release of AA induced by epinephrine+Ca2+ ionophore to basal value, whereas bromoenol lactone, a specific Ca2+-independent PLA2 inhibitor, had no effect. Preincubation of the cells with the intracellular calcium chelator BAPTA gave a dose-dependent inhibition of the arachidonic acid (AA) release. In CHO cells expressing the angiotensin II type 1 receptor, coupled to a Gq protein, the agonist (10-7 M) produced maximal AA release: there was no extra increase when angiotensin and Ca2+ ionophore were added together. There was no increase in the amount of inositol 1,4, 5-triphosphate following stimulation of CHO-2B, -2C, -2D cells with 1 microM epinephrine. Epinephrine led to greater phosphorylation of cPLA2, resulting in an electrophoretic mobility shift for all three cell lines, so inadequate p42/44 MAPKs stimulation was not responsible for the weaker stimulation of cPLA2 in CHO-2C cells. Therefore, the stimulation of cPLA2 by Gi proteins presumably involves another unknown mechanism. The differential stimulation of cPLA2 in these transfectants will be of value to study the actual involvement of the transduction pathways leading to maximal cPLA2 stimulation.  (+info)

Half-of-the-sites reactivity of outer-membrane phospholipase A against an active-site-directed inhibitor. (27/3436)

The reaction of a novel active-site-directed phospholipase A1 inhibitor with the outer-membrane phospholipase A (OMPLA) was investigated. The inhibitor 1-p-nitrophenyl-octylphosphonate-2-tridecylcarbamoyl-3-et hanesulfonyl -amino-3-deoxy-sn-glycerol irreversibly inactivated OMPLA. The inhibition reaction did not require the cofactor calcium or an unprotonated active-site His142. The inhibition of the enzyme solubilized in hexadecylphosphocholine micelles was characterized by a rapid (t1/2 = 20 min) and complete loss of enzymatic activity, concurrent with the covalent modification of 50% of the active-site serines, as judged from the amount of p-nitrophenolate (PNP) released. Modification of the remaining 50% occurred at a much lower rate, indicative of half-of-the-sites reactivity against the inhibitor of this dimeric enzyme. Inhibition of monomeric OMPLA solubilized in hexadecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate resulted in an equimolar monophasic release of PNP, concurrent with the loss of enzymatic activity (t1/2 = 14 min). The half-of-the-sites reactivity is discussed in view of the dimeric nature of this enzyme.  (+info)

Engineering the disulphide bond patterns of secretory phospholipases A2 into porcine pancreatic isozyme. The effects on folding, stability and enzymatic properties. (28/3436)

Secretory phospholipases A2 (PLA2s) are small homologous proteins rich in disulphide bridges. These PLA2s have been classified into several groups based on the disulphide bond patterns found [Dennis, E. A. (1997) Trends Biochem. Sci. 22, 1-2]. To probe the effect of the various disulphide bond patterns on folding, stability and enzymatic properties, analogues of the secretory PLA2s were produced by protein engineering of porcine pancreatic PLA2. Refolding experiments indicate that small structural variations play an important role in the folding of newly made PLA2 analogues. Introduction of a C-terminal extension together with disulphide bridge 50-131 gives rise to an enzyme that displays full enzymatic activity having increased conformational stability. In contrast, introduction of a small insertion between positions 88 and 89 together with disulphide bridge 86-89 decreases the catalytic activity significantly, but does not change the stability. Both disulphide bridges 11-77 and 61-91 are important for the kinetic properties and stability of the enzyme. Disulphide bridge 11-77, but not 61-91, was found to be essential to resist tryptic breakdown of native porcine pancreatic PLA2.  (+info)

Inhibition of phospholipase A2-mediated arachidonic acid release by cyclic AMP defines a negative feedback loop for P2Y receptor activation in Madin-Darby canine kidney D1 cells. (29/3436)

In Madin-Darby canine kidney D1 cells extracellular nucleotides activate P2Y receptors that couple to several signal transduction pathways, including stimulation of multiple phospholipases and adenylyl cyclase. For one class of P2Y receptors, P2Y2 receptors, this stimulation of adenylyl cyclase and increase in cAMP occurs via the conversion of phospholipase A2 (PLA2)-generated arachidonic acid (AA) to prostaglandins (e.g. PGE2). These prostaglandins then stimulate adenylyl cyclase activity, presumably via activation of prostanoid receptors. In the current study we show that agents that increase cellular cAMP levels (including PGE2, forskolin, and the beta-adrenergic agonist isoproterenol) can inhibit P2Y receptor-promoted AA release. The protein kinase A (PKA) inhibitor H89 blocks this effect, suggesting that this feedback inhibition occurs via activation of PKA. Studies with PGE2 indicate that inhibition of AA release is attributable to inhibition of mitogen-activated protein kinase activity and in turn of P2Y receptor stimulated PLA2 activity. Although cAMP/PKA-mediated inhibition occurs for P2Y receptor-promoted AA release, we did not find such inhibition for epinephrine (alpha1-adrenergic) or bradykinin-mediated AA release. Taken together, these results indicate that negative feedback regulation via cAMP/PKA-mediated inhibition of mitogen-activated protein kinase occurs for some, but not all, classes of receptors that promote PLA2 activation and AA release. We speculate that receptor-selective feedback inhibition occurs because PLA2 activation by different receptors in Madin-Darby canine kidney D1 cells involves the utilization of different signaling components that are differentially sensitive to increases in cAMP or, alternatively, because of compartmentation of signaling components.  (+info)

GABA(B) receptor-mediated stimulation of adenylyl cyclase activity in membranes of rat olfactory bulb. (30/3436)

Previous studies have shown that GABA(B) receptors facilitate cyclic AMP formation in brain slices likely through an indirect mechanism involving intracellular second messengers. In the present study, we have investigated whether a positive coupling of GABA(B) receptors to adenylyl cyclase could be detected in a cell-free preparation of rat olfactory bulb, a brain region where other Gi/Go-coupled neurotransmitter receptors have been found to stimulate the cyclase activity. The GABA(B) receptor agonist (-)-baclofen significantly increased basal adenylyl cyclase activity in membranes of the granule cell and external plexiform layers, but not in the olfactory nerve-glomerular layer. The adenylyl cyclase stimulation was therefore examined in granule cell layer membranes. The (-)-baclofen stimulation (pD2=4.53) was mimicked by 3-aminopropylphosphinic acid (pD2=4.60) and GABA (pD2=3.56), but not by (+)-baclofen, 3-aminopropylphosphonic acid, muscimol and isoguvacine. The stimulatory effect was counteracted by the GABA(B) receptor antagonists CGP 35348 (pA2=4.31), CGP 55845 A (pA2=7.0) and 2-hydroxysaclofen (pKi=4.22). Phaclofen (1 mM) was inactive. The (-)-baclofen stimulation was not affected by quinacrine, indomethacin, nordihydroguaiaretic acid and staurosporine, but was completely prevented by pertussis toxin and significantly reduced by the alpha subunit of transducin, a betagamma scavenger. The betagamma subunits of transducin stimulated the cyclase activity and this effect was not additive with that produced by (-)-baclofen. In the external plexiform and granule cell layers, but not in the olfactory nerve-glomerular layer, (-)-baclofen enhanced the adenylyl cyclase stimulation elicited by the neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) 38. Conversely, the adenylyl cyclase activity stimulated by either forskolin or Ca2+/calmodulin-(Ca2+/CaM) was inhibited by (-)-baclofen in all the olfactory bulb layers examined. These data demonstrate that in specific layers of rat olfactory bulb activation of GABA(B) receptors enhances basal and neurotransmitter-stimulated adenylyl cyclase activities by a mechanism involving betagamma subunits of Gi/Go. This positive coupling is associated with a widespread inhibitory effect on forskolin- and Ca2+/CaM-stimulated cyclic AMP formation.  (+info)

Pneumococcus activation of the 5-lipoxygenase pathway and production of glycoproteins in the middle ear of rats. (31/3436)

Pneumococcal otitis media is associated with the production of potent inflammatory mediators (leukotrienes), but the mechanism by which pneumococcus induces production of leukotrienes in the middle ear is poorly understood. In this study, up-regulation of 2 genes that govern the lipoxygenase pathway, cPLA2 and 5-LOX, was observed in rats following inoculation of pneumococcus into the middle ear cavity. Expression of cPLA2 was low, and 5-LOX gene expression was not detected in control animals. Up-regulation of cPLA2 and 5-LOX in middle ear epithelial cells was accompanied by an increase of high-molecular-weight glycoproteins in middle ear fluid and cells. These findings suggest that pneumococcus activates the lipoxygenase pathway by up-regulating expression of the cPLA2 and 5-LOX genes. This, in turn, may stimulate synthesis and secretion of high-molecular-weight glycoproteins that facilitate production of fluid in the middle ear cleft.  (+info)

Effect of phospholipase A2 digestion on the conformation and lysine/fibrinogen binding properties of human lipoprotein[a]. (32/3436)

In vitro hydrolysis of human lipoprotein[a] (Lp[a]) by phospholipase A2 (PLA2) decreased the phosphatidylcholine (PC) content by 85%, but increased nonesterified fatty acids 3.2-fold and lysoPC 12.9-fold. PLA2-treated Lp[a] had a decreased molecular weight, increased density, and greater electronegativity on agarose gels. In solution, PLA2-Lp[a] was a monomer, and when assessed by sedimentation velocity it behaved like untreated Lp[a], in that it remained compact in NaCl solutions but assumed the extended form in the presence of 6-amino hexanoic acid, which was shown previously to have an affinity for the apo[a] lysine binding site II (LBS II) comprising kringles IV5-8. We interpreted our findings to indicate that PLA2 digestion had no effect on the reactivity of this site. This conclusion was supported by the results obtained from lysine Sepharose and fibrinogen binding experiments, in the presence and absence of Tween 20, showing that phospholipolysis had no effect on the reactivity of the LBS-II domain. A comparable binding behavior was also exhibited by the free apo[a] derived from each of the two forms of Lp[a]. We did observe a small increase in affinity of PLA2-Lp[a] to lysine Sepharose and attributed it to changes in reactivity of the LBS I domain (kringle IV10) induced by phospholipolysis. In conclusion, the extensive modification of Lp[a] caused by PLA2 digestion had no significant influence on the reactivity of LBS II, which is the domain involved in the binding of apo[a] to fibrinogen and apoB-100. These results also suggest that phospholipids do not play an important role in these interactions.  (+info)