Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. (41/762)

We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system at the regulatory Ser-46 as well as the dephosphorylation of seryl-phosphorylated HPr (P-Ser-HPr). The two opposing activities of HprK/P were regulated by fructose-1,6-bisphosphate, which stimulated HPr phosphorylation, and by inorganic phosphate, which stimulated the P-Ser-HPr phosphatase activity. A mutant producing truncated HprK/P was found to be devoid of both HPr kinase and P-Ser-HPr phosphatase activities. When hprK was inactivated, carbon catabolite repression of N-acetylglucosaminidase disappeared, and the lag phase observed during diauxic growth of the wild-type strain on media containing glucose plus either lactose or maltose was strongly diminished. In addition, inducer exclusion exerted by the presence of glucose on maltose transport in the wild-type strain was abolished in the hprK mutant. However, inducer expulsion of methyl beta-D-thiogalactoside triggered by rapidly metabolizable carbon sources was still operative in ptsH mutants altered at Ser-46 of HPr and the hprK mutant, suggesting that, in contrast to the model proposed for inducer expulsion in gram-positive bacteria, P-Ser-HPr might not be involved in this regulatory process.  (+info)

A common interface on histidine-containing phosphocarrier protein for interaction with its partner proteins. (42/762)

The bacterial phosphoenolpyruvate:sugar phosphotransferase system accomplishes both the transport and phosphorylation of sugars as well as the regulation of some cellular processes. An important component of this system is the histidine-containing phosphocarrier protein, HPr, which accepts a phosphoryl group from enzyme I, transfers a phosphoryl group to IIA proteins, and is an allosteric regulator of glycogen phosphorylase. Because the nature of the surface on HPr that interacts with this multiplicity of proteins from Escherichia coli was previously undefined, we investigated these interactions by nuclear magnetic resonance spectroscopy. The chemical shift changes of the backbone and side-chain amide (1)H and (15)N nuclei of uniformly (15)N-labeled HPr in the absence and presence of natural abundance glycogen phosphorylase, glucose-specific enzyme IIA, or the N-terminal domain of enzyme I have been determined. Mapping these chemical shift perturbations onto the three-dimensional structure of HPr permitted us to identify the binding surface(s) of HPr for interaction with these proteins. Here we show that the mapped interfaces on HPr are remarkably similar, indicating that HPr employs a similar surface in binding to its partners.  (+info)

15N and 1H NMR study of histidine containing protein (HPr) from Staphylococcus carnosus at high pressure. (43/762)

The pressure-induced changes in 15N enriched HPr from Staphylococcus carnosus were investigated by two-dimensional (2D) heteronuclear NMR spectroscopy at pressures ranging from atmospheric pressure up to 200 MPa. The NMR experiments allowed the simultaneous observation of the backbone and side-chain amide protons and nitrogens. Most of the resonances shift downfield with increasing pressure indicating generalized pressure-induced conformational changes. The average pressure-induced shifts for amide protons and nitrogens are 0.285 ppm GPa(-1) at 278 K and 2.20 ppm GPa(-1), respectively. At 298 K the corresponding values are 0.275 and 2.41 ppm GPa(-1). Proton and nitrogen pressure coefficients show a significant but rather small correlation (0.31) if determined for all amide resonances. When restricting the analysis to amide groups in the beta-pleated sheet, the correlation between these coefficients is with 0.59 significantly higher. As already described for other proteins, the amide proton pressure coefficients are strongly correlated to the corresponding hydrogen bond distances, and thus are indicators for the pressure-induced changes of the hydrogen bond lengths. The nitrogen shift changes appear to sense other physical phenomena such as changes of the local backbone conformation as well. Interpretation of the pressure-induced shifts in terms of structural changes in the HPr protein suggests the following picture: the four-stranded beta-pleated sheet of HPr protein is the least compressible part of the structure showing only small pressure effects. The two long helices a and c show intermediary effects that could be explained by a higher compressibility and a concomitant bending of the helices. The largest pressure coefficients are found in the active center region around His15 and in the regulatory helix b which includes the phosphorylation site Ser46 for the HPr kinase. This suggests that this part of the structure occurs in a number of different structural states whose equilibrium populations are shifted by pressure. In contrast to the surrounding residues of the active center loop that show large pressure effects, Ile14 has a very small proton and nitrogen pressure coefficient. It could represent some kind of anchoring point of the active center loop that holds it in the right place in space, whereas other parts of the loop adapt themselves to changing external conditions.  (+info)

Phosphorylation state of HPr determines the level of expression and the extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus. (44/762)

The lactose transport protein (LacS) of Streptococcus thermophilus is composed of a translocator domain and a regulatory domain that is phosphorylated by HPr(His approximately P), the general energy coupling protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). Lactose transport is affected by the phosphorylation state of HPr through changes in the activity of the LacS protein as well as expression of the lacS gene. To address whether or not CcpA-HPr(Ser-P)-mediated catabolite control is involved, the levels of LacS were determined under conditions in which the cellular phosphorylation state of HPr greatly differed. It appears that HPr(Ser-P) is mainly present in the exponential phase of growth, whereas HPr(His approximately P) dominates in the stationary phase. The transition from HPr(Ser-P) to HPr(His approximately P) parallels an increase in LacS level, a drop in lactose and an increase in galactose concentration in the growth medium. Because the K(m)(out) for lactose is higher than that for galactose, the lactose transport capacity decreases as lactose concentration decreases and galactose accumulates in the medium. Our data indicate that S. thermophilus compensates for the diminished transport capacity by synthesizing more LacS and phosphorylating the protein, which results in increased transport activity. The link between transport capacity and lacS expression levels and LacS phosphorylation are discussed.  (+info)

HPr(His approximately P)-mediated phosphorylation differently affects counterflow and proton motive force-driven uptake via the lactose transport protein of Streptococcus thermophilus. (45/762)

The lactose transport protein (LacS) of Streptococcus thermophilus has a C-terminal hydrophilic domain that is homologous to IIA protein and protein domains of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The IIA domain of LacS is phosphorylated on His-552 by the general energy coupling proteins of the PTS, which are Enzyme I and HPr. To study the effect of phosphorylation on transport, the LacS protein was purified and incorporated into liposomes with the IIA domain facing outwards. This allowed the phosphorylation of the membrane-reconstituted protein by purified HPr(His approximately P) of S. thermophilus. Phosphorylation of LacS increased the V(max) of counterflow transport, whereas the V(max) of the proton motive force (delta p)-driven lactose uptake was not affected. In line with a range of kinetic studies, we propose that phosphorylation affects the rate constants for the reorientation of the ternary complex (LacS with bound lactose plus proton), which is rate-determining for counterflow but not for delta p-driven transport.  (+info)

Restriction fragment differential display of pediocin-resistant Listeria monocytogenes 412 mutants shows consistent overexpression of a putative beta-glucoside-specific PTS system. (46/762)

Pediocin PA-1, which is a bacteriocin produced by lactic acid bacteria, has potential as a biopreservative of food. However, such use may lead to the development of resistance in the target organism. Gene expression in two independent pediocin-resistant mutants of Listeria monocytogenes 412 was compared to the original isolate by restriction fragment differential display PCR (RFDD-PCR). This method amplifies cDNA restriction fragments under stringent PCR conditions, enabled by the use of specific primers complementary to ligated adaptor sequences. RFDD-PCR was very well suited for analysis of listerial gene expression, giving reproducible PCR product profiles. Three gene fragments having increased expression in both resistant mutants were identified. All three had homology to components of beta-glucoside-specific phosphoenolpyruvate-dependent phosphotransferase systems (PTS), one fragment having homology to enzyme II permeases, and the two others to phospho-beta-glucosidases. Overexpression of the putative PTS system was consistently observed in 10 additional pediocin-resistant mutants, isolated at different pH, salt content and temperature. The results suggest that RFDD-PCR is a strong approach for the analysis of prokaryotic gene expression and that the putative beta-glucoside-specific PTS system is involved in mediating pediocin resistance.  (+info)

Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. (47/762)

Leucocin A is a class IIa bacteriocin produced by Leuconostoc spp. that has previously been shown to inhibit the growth of Listeria monocytogenes. A spontaneous resistant mutant of L. monocytogenes was isolated and found to be resistant to leucocin A at levels in excess of 2 mg/ml. The mutant showed no significant cross-resistance to nontype IIa bacteriocins including nisaplin and ESF1-7GR. However, there were no inhibition zones found on a lawn of the mutant when challenged with an extract containing 51,200 AU of pediocin PA-2 per ml as determined by a simultaneous assay on the sensitive wild-type strain. DNA and protein analysis of the resistant and susceptible strains were carried out using silver-stained amplified fragment length polymorphism (ssAFLP) and one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Two-dimensional SDS-PAGE clearly showed a 35-kDa protein which was present in the sensitive but absent from the resistant strain. The N-terminal end of the 35-kDa protein was sequenced and found to have an 83% homology to the mannose-specific phosphotransferase system enzyme IIAB of Streptococcus salivarius.  (+info)

A novel beta-glucoside-specific PTS locus from Streptococcus mutans that is not inhibited by glucose. (48/762)

A regulon from Streptococcus mutans that plays a role in the utilization of beta-glucosides has been isolated, sequenced and subjected to sequence analysis. This regulon encodes a beta-glucoside-specific Enzyme II (EII) component (bglP) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and a phospho-beta-glucosidase (bglA) which is responsible for the breakdown of the phospho-beta-glucosides within the cell. Both the bglP and bglA gene products have significant similarity with proteins that have similar functions from Clostridium longisporum, Listeria monocytogenes, Erwinia chrysanthemi, Escherichia coli, Klebsellia oxytoca and Bacillus subtilis. The potential functions of the BglP and BglA proteins are supported by phenotypic data from both S. mutans and E. coli. A chromosomal deletion in S. mutans spanning the bglP and bglA genes resulted in a strain that was unable to hydrolyse the beta-glucoside aesculin in the presence of glucose. When glucose was removed from the medium, the deletion strain regained the ability to break down aesculin. These data suggest that S. mutans possesses an alternative mechanism from the one described in this report for breaking down beta-glucosides. This second mechanism was repressed by glucose while the regulon described here was not. Complementation studies in E. coli CC118 also suggest a potential role for this regulon in the utilization of other beta-glucosides. When a plasmid containing the 8 kb beta-glucoside-specific regulon was transformed into E. coli CC118, the transformed strain was able to break down the beta-glucoside arbutin.  (+info)