Effect of dehydroepiandrosterone on phosphatidylserine or phosphatidylcholine bilayers: DSC and X-ray diffraction study. (73/2206)

The effect of dehydroepiandrosterone (DHEA) on the thermotropic and structural properties of phosphatidylserine or phosphatidylcholine membranes was investigated by differential scanning calorimetry and X-ray diffraction. At molar fractions of sterol, X (sterol), less than approximately 0.2, DHEA interacts with both types of model membranes, depressing the melting temperature and reducing the enthalpy of melting. At higher concentrations, phase separation of DHEA occurs with appearance of crystallites of the S2 monohydrate form.  (+info)

Dextran enhances calcium-induced aggregation of phosphatidylserine liposomes: possible implications for exocytosis. (74/2206)

We have studied the calcium-induced aggregation of phosphatidylserine liposomes in the presence of various concentration of a high-molecular water-soluble polysaccharide dextran. It has been shown that threshold concentrations of calcium necessary to induce liposome aggregation in the presence of approximately 1 mM concentration of dextran is about one order lower than in the absence of dextran. Soluble intracellular polymers may thus play an important role in the process of exocytosis.  (+info)

Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. (75/2206)

Recombinant annexin V (rAnV) has been used to identify apoptotic cells based on its ability to bind phosphatidylserine (PS), a lipid normally restricted to the cytoplasmic face of the plasma membrane, but externalized early during apoptosis. However, this association of rAnV binding and apoptosis is not an obligatory one. We demonstrate that rAnV binds to a large fraction of murine B cells bearing selectable Ag receptors despite the fact that these cells are not apoptotic. Phosphatidylserine, which is uniformly distributed on resting B cells, is mobilized to co-cap with IgM on anti-IgM-treated B cells and to colocalize with GM1, a marker of lipid rafts. Cross-linking PS before anti-IgM treatment sequesters this lipid and alters signaling through IgM. Thus, PS exposed on the majority of B cells in vivo does not reflect early apoptosis, but, instead, plays a role in receptor-mediated signaling events.  (+info)

Endothelin-1 attenuates omega3 fatty acid-induced apoptosis by inhibition of caspase 3. (76/2206)

Endothelin-1 (ET-1) may be involved in the induction of vascular hypertrophy in hypertension. ET-1 may also modulate vascular growth through the exertion of antiapoptotic effects. The omega3 fatty acids (omega3 FAs), which have antiproliferative effects in various cell types, may have a beneficial role in hypertension. We tested the hypothesis that ET-1 could act as a survival factor against omega3 FA-induced apoptosis and attempted to elucidate possible molecular mechanisms underlying the protective action of ET-1 on docosahexaenoic acid (DHA)-induced apoptosis. Mesenteric vascular smooth muscle cells were stimulated with DHA, a representative omega3 FA. Dose-response curves of DHA at different apoptotic stages were assessed with the use of flow cytometry: (1) very early: plasma membrane phosphatidylserine (PS) translocation; (2) early: change in mitochondrial transmembrane potential (DeltaPsim); and (3) late: cell cycle analysis. Expression of the proapoptotic protein bax and the antiapoptotic protein bcl-2 was determined with Western blot assay. The activity and the expression of caspase 3, which is a critical proteolytic enzyme involved in the death-signaling pathway, were evaluated with a fluorometric immunosorbent enzyme assay and Western blot analysis, respectively. Apoptosis, which was detected with PS translocation, DeltaPsim disruption, and cell cycle analysis, was increased dose dependently by DHA. DHA-induced apoptosis was attenuated through exposure to ET-1 for 1 hour before DHA in cell cycle analysis. The interference of ET-1 with DHA-induced apoptosis, as detected with cell cycle analysis, was not apparent at the membrane (PS translocation) or the mitochondrial (DeltaPsim) level. The increase in bax/bcl-2 ratio in DHA-stimulated cells was not affected by ET-1. However, DHA increased both caspase 3 activity and the active forms of caspase 3 (20 and 17 kDa), resulting in enhanced DNA fragmentation as shown through Hoechst staining and fluorescence microscopy, which were attenuated by ET-1 pretreatment. In conclusion, DHA, an omega3 FA, induced apoptosis in vascular smooth muscle cells in a dose-dependent manner. ET-1 exerted important protective effects through the attenuation of DHA-induced caspase 3 activation and subsequent DNA fragmentation in the late stages of apoptosis.  (+info)

Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis. (77/2206)

The effects of the short-chain ceramides D-erythro-N-acetylsphingosine (C(2)-ceramide), 6-[N-(7-nitrobenz-2-oxa-1, 3-diazole-4-yl)amino]hexanoyl-D-erythro-sphingosine(NBD-ceramide) and N-[4,4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl]-D-erythro-sphingosine (DMB-ceramide) on the incorporation of [(14)C]acetate into baby-hamster kidney (BHK) fibroblasts have been examined. C(2)-ceramide at concentrations up to 20 microM caused an inhibition of synthesis of phosphatidylcholine (PtdCho), sphingolipids and cholesterol within 2 h. Similar effects in BHK cells were seen using other radioactive tracers ([(3)H]water, [(3)H]palmitate and [(3)H]choline) and using HL60 cells labelled with [(14)C]acetate. The inhibition of PtdCho synthesis corresponded to an accumulation of label in diacylglycerol and triacylglycerol, probably as a consequence of cytidylyltransferase blockade. With [(3)H]choline label, the decrease in sphingomyelin synthesis could be partly accounted for by accumulation of a slow-moving lipid, likely to be C(2)-sphingomyelin. NBD-ceramide also reduced sphingomyelin and cholesterol biosynthesis, but had much less effect on PtdCho and acylglycerols. In contrast, the only apparent effect of DMB-ceramide was to inhibit synthesis of sphingomyelin, with a reciprocal increase in DMB-sphingomyelin synthesis. However, all of these short-chain ceramides caused massive apoptosis after 18 h, whereas addition of N-acetyldihydrosphingosine or elevation of natural ceramide by treatment of cells with sphingomyelinase had little effect on lipid synthesis or apoptosis. The present findings suggest that the apoptotic effect of short-chain ceramides is sometimes associated with inhibition of cytidylyltransferase, but is more closely correlated with a competitive inhibition of normal sphingomyelin biosynthesis.  (+info)

Cholesterol crystalline polymorphism and the solubility of cholesterol in phosphatidylserine. (78/2206)

There is a marked hysteresis between the heating and cooling polymorphic phase transition of anhydrous cholesterol. At a scan rate of 0.05 degrees C/min the difference in transition temperatures between heating and cooling scans is approximately 10 degrees C. This phenomenon also occurs with mixtures of cholesterol with phosphatidylserine and can result in an underestimation of the amount of crystalline cholesterol in a sample that has not been cooled sufficiently. With 1-palmitoyl-2-oleoyl phosphatidylserine and 1-stearoyl-2-oleoyl phosphatidylserine the cholesterol crystallites form while the lipid remains in the L(alpha) phase. Sonication of dimyristoyl phosphatidylserine with a 0.4 mol fraction cholesterol results in the loss of cholesterol crystallite diffraction, but only a partial loss of the polymorphic transition detected by calorimetry. We therefore conclude that the thermal history of the sample can have profound effects on the appearance of the polymorphic phase transition of cholesterol by differential scanning calorimetry. Depending on the morphology of the vesicles, diffraction methods may underevaluate the amount of cholesterol crystallites present.  (+info)

Phospholipase D regulation and localisation is dependent upon a phosphatidylinositol 4,5-biphosphate-specific PH domain. (79/2206)

The signalling pathway leading, for example, to actin cytoskeletal reorganisation, secretion or superoxide generation involves phospholipase D (PLD)-catalysed hydrolysis of phosphatidylcholine to generate phosphatidic acid, which appears to mediate the messenger functions of this pathway. Two PLD genes (PLD1 and PLD2) with similar domain structures have been doned and progress has been made in identifying the protein regulators of PLD1 activation, for example Arf and Rho family members. The activities of both PLD isoforms are dependent on phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and our sequence analysis suggested the presence of a pleckstrin homology (PH) domain in PLD1, although its absence has also been daimed. Investigation of the inositide dependence showed that a bis-phosphorylated lipid with a vicinal pair of phosphates was required for PLD1 activity. Furthermore, PLD1 bound specifically and with high affinity to lipid surfaces containing PI(4,5)P2 independently of the substrate phosphatidylcholine, suggesting a key role for the PH domain in PLD function. Importantly, a glutathione-S-transferase (GST) fusion protein comprising GST and the PH domain of PLD1 (GST-PLD1-PH) also bound specifically to supported lipid monolayers containing PI(4,5)P2. Point mutations within the PLD1 PH domain inhibited enzyme activity, whereas deletion of the domain both inhibited enzyme activity and disrupted normal PLD1 localisation. Thus, the functional PH domain regulates PLD by mediating its interaction with polyphosphoinositide-containing membranes; this might also induce a conformational change, thereby regulating catalytic activity.  (+info)

Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. (80/2206)

Phospholipid asymmetry is well maintained in erythrocyte (RBC) membranes with phosphatidylserine (PS) exclusively present in the inner leaflet. The appearance of PS on the surface of the cell can have major physiologic consequences, including increased cell-cell interactions. Because increased adherence of PS-exposing RBCs to endothelial cells (ECs) may be pathologically important in hemoglobinopathies such as sickle cell disease and thalassemia, we studied the role of PS exposure in calcium ionophore-treated normal RBC adherence to human umbilical vein endothelial cell (HUVEC) monolayers. When HUVEC monolayers were incubated with these PS-exposing RBCs, the ECs retracted and the RBCs adhered primarily in the gaps opened between the ECs. A linear correlation was found between the number of PS-exposing RBCs in the population and the number of adhering RBCs to the monolayer. Pretreatment of RBCs with annexin V significantly decreased adherence by shielding PS on the RBCs. Similarly, PS-containing lipid vesicles decreased RBC binding by competing for the PS binding sites in the monolayer. PS-exposing RBCs and PS-containing lipid vesicles adhered to immobilized thrombospondin (TSP) and matrix TSP, respectively, and adherence of PS-exposing RBCs to EC monolayers was reduced by antibodies to TSP and to its EC receptor, alpha(v)beta(3). Together, these results indicate a role for PS and matrix TSP in the adherence of PS-exposing RBCs to EC monolayers, and suggest an important contribution of PS-exposing RBCs in pathologies with reported vascular damage, such as sickle cell anemia. (Blood. 2000;95:1293-1300)  (+info)