Expression of phosphatidylethanolamine N-methyltransferase in Yoshida ascites hepatoma cells and the livers of host rats. (1/157)

Previous studies have implicated phosphatidylethanolamine N-methyltransferase-2 (PEMT2) in the regulation of non-neoplastic liver growth [Tessitore,L., Cui,Z. and Vance,E. (1997) Biochem. J., 322, 151-154]. We have now investigated whether or not PEMT2 is also involved in the control of proliferation of hepatoma cells growing in an animal and cell death by apoptosis in the liver of tumor-bearing rats. PEMT activity was barely detectable and PEMT2 protein was absent in hepatoma cells growing exponentially in vivo whereas CTP:phosphocholine cytidylyltransferase (CT) activity and expression were high. The lack of PEMT2 corresponded with the absence of its mRNA. Both PEMT2 protein and mRNA appeared when cells entered the stationary phase of tumor growth and, in parallel, CT expression decreased. The host liver first became hyperplastic and exhibited a slight increase in CT activity and decrease in PEMT2 expression. During the stationary phase of hepatoma growth the host liver regressed and eventually became hypoplastic following induction of apoptosis. The appearance of apoptosis in the host liver was associated with a marked reduction in both CT activity and expression as well as an enhancement of PEMT activity and PEMT2 expression. McArdle RH7777 hepatoma cells underwent apoptosis when transfected with cDNA for PEMT2. The evidence supports the proposal that PEMT2 may have a role in the regulation of 'in vivo' hepatoma and hepatocyte cell division as well as hepatocyte cell death by apoptosis.  (+info)

Plant-exuded choline is used for rhizobial membrane lipid biosynthesis by phosphatidylcholine synthase. (2/157)

Phosphatidylcholine is a major lipid of eukaryotic membranes, but found in only few prokaryotes. Enzymatic methylation of phosphatidylethanolamine by phospholipid N-methyltransferase was thought to be the only biosynthetic pathway to yield phosphatidylcholine in bacteria. However, mutants of the microsymbiotic soil bacterium Sinorhizobium (Rhizobium) meliloti, defective in phospholipid N-methyltransferase, form phosphatidylcholine in wild type amounts when choline is provided in the growth medium. Here we describe a second bacterial pathway for phosphatidylcholine biosynthesis involving the novel enzymatic activity, phosphatidylcholine synthase, that forms phosphatidylcholine directly from choline and CDP-diacylglycerol in cell-free extracts of S. meliloti. We further demonstrate that roots of host plants of S. meliloti exude choline and that the amounts of exuded choline are sufficient to allow for maximal phosphatidylcholine biosynthesis in S. meliloti via the novel pathway.  (+info)

Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. (3/157)

In addition to the CDP-choline pathway for phosphatidylcholine (PC) synthesis, the liver has a unique phosphatidylethanolamine (PE) methyltransferase activity for PC synthesis via three methylations of the ethanolamine moiety of PE. Previous studies indicate that the two pathways are functionally different and not interchangeable even though PC is the common product of both pathways. This study was designed to test the hypothesis that these two pathways produce different profiles of PC species. The PC species from these two pathways were labeled with specific stable isotope precursors, D9-choline and D4-ethanolamine, and analyzed by electrospray tandem mass spectrometry. Our studies revealed a profound distinction in PC profiles between the CDP-choline pathway and the PE methylation pathway. PC molecules produced from the CDP-choline pathway were mainly comprised of medium chain, saturated (e.g. 16:0/18:0) species. On the other hand, PC molecules from the PE methylation pathway were much more diverse and were comprised of significantly more long chain, polyunsaturated (e.g. 18:0/20:4) species. PC species from the methylation pathway contained a higher percentage of arachidonate and were more diverse than those from the CDP-choline pathway. This profound distinction of PC profiles may contribute to the different functions of these two pathways in the liver.  (+info)

Why expression of phosphatidylethanolamine N-methyltransferase does not rescue Chinese hamster ovary cells that have an impaired CDP-choline pathway. (4/157)

The mutant Chinese hamster ovary cell line (CHO), MT58, has a temperature-sensitive mutation in CTP:phosphocholine cytidylyltransferase (CT), preventing phosphatidylcholine (PC) synthesis at 40 degrees C which results in apoptosis. Previous studies (Houweling, M., Cui, Z., and Vance, D. E. (1995) J. Biol. Chem. 270, 16277-16282) showed that expression of wild-type CT-alpha rescued the cells at 40 degrees C, whereas expression of phosphatidylethanolamine N-methyltransferase-2 (PEMT2) did not, even though PC levels appeared to be maintained at wild-type levels after 24 h at the restrictive temperature. We report that the failure of PEMT2 to rescue the MT58 cell line is due to inadequate long term PC synthesis. We found that changing the medium every 24 h rescued the PEMT2-expressing MT58 cells grown at 40 degrees C. This was due to the uptake and utilization of lipids in the serum. At 40 degrees C, PC levels in the wild-type CHO cells and CT-expressing MT58 cells increased over time whereas PC levels did not change in both the MT58 and PEMT2-expressing MT58 cell lines. Further investigation found that both the PEMT2-expressing MT58 and MT58 cell lines accumulated triacylglycerol at 40 degrees C. Pulse-chase experiments indicated that lyso-PC accumulated to a higher degree at 40 degrees C in the PEMT2-expressing MT58 cells compared with CT-expressing MT58 cells. Transfection of the PEMT-expressing MT58 cells with additional PEMT2 cDNA partially rescued the growth of these cells at 40 degrees C. Inhibition of PC degradation, by inhibitors of phospholipases, also stimulated PEMT-expressing MT58 cell growth at 40 degrees C. Best results were observed using a calcium-independent phospholipase A(2) inhibitor, methyl arachidonyl fluorophosphonate. This inhibitor also increased PC mass in the PEMT2-expressing MT58 cells. When the cells are shifted to 40 degrees C, PC degradation by enzymes such as phospholipases is greater than PC synthesis in the mutant PEMT2-expressing MT58 cells. Taken together, these results indicate that PEMT2 expression fails to rescue the mutant cell line at 40 degrees C because it does not maintain PC levels required for cellular replication.  (+info)

A network of yeast basic helix-loop-helix interactions. (5/157)

The Ino4 protein belongs to the basic helix-loop-helix (bHLH) family of proteins. It is known to form a dimer with Ino2p, which regulates phospholipid biosynthetic genes. Mammalian bHLH proteins have been shown to form multiple dimer combinations. However, this flexibility in dimerization had not been documented for yeast bHLH proteins. Using the yeast two-hybrid assay and a biochemical assay we show that Ino4p dimerizes with the Pho4p, Rtg1p, Rtg3p and Sgc1p bHLH proteins. Screening a yeast cDNA library identified three additional proteins that interact with Ino4p: Bck2p, YLR422W and YNR064C. The interaction with Bck2p prompted us to examine if any of the Bck2p-associated functions affect expression of phospholipid biosynthetic genes. We found that hyperosmotic growth conditions altered the growth phase regulation of a phospholipid biosynthetic gene, CHO1. There are two recent reports of initial whole genome yeast two-hybrid interactions. Interestingly, one of these reports identified five proteins that interact with Ino4p: Ino2p, Hcs1p, Apl2p, YMR317W and YNL279W. Ino2p is the only protein in common with the data presented here. Our finding that Ino4p interacts with five bHLH proteins suggests that Ino4p is likely to be a central player in the coordination of multiple biological processes.  (+info)

Structure, expression profile and alternative processing of the human phosphatidylethanolamine N-methyltransferase (PEMT) gene. (6/157)

Phosphatidylethanolamine N-methyltransferase (PEMT) catalyzes the conversion of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in a series of three methylation reactions. Preliminary studies of PEMT in humans led to the cloning of three cDNAs each of which has a different 5' untranslated region (5'UTR). To determine the origin of PEMT splice variants and to investigate expression of the gene in human liver, we isolated a bacterial artificial chromosome (BAC) clone containing the full-length human gene. Each of the three unique untranslated first exons is present in a contiguous array in the gene, confirming the integrity of the cDNAs and alternative processing of PEMT transcripts. Human liver, heart and testis contain the highest levels of PEMT transcripts and of these, liver has the greatest PEMT expression. Furthermore, each of the three PEMT transcripts is present in varying abundance in liver whereas heart and testis contain only one and two transcripts, respectively. Thus, differential promoter usage in the human PEMT gene generates three unique transcripts and confers a tissue-specific expression pattern.  (+info)

Choline deficiency-induced liver damage is reversible in Pemt(-/-) mice. (7/157)

Hepatic tissue has two pathways for phosphatidylcholine (PC) synthesis, i.e., the cytidinediphosphocholine (CDP-choline) pathway and the methylation pathway, which utilizes phosphatidylethanolamine-N-methyltransferase (PEMT). Fatal liver damage occurs in Pemt(-/-)mice fed a choline-deficient (CD) diet. We investigated whether liver damage can be reversed by the addition of dietary choline. Mice (8 wk old) were fed the CD purified diet for 4 d, a choline-supplemented (CS) diet (CD diet + 0.4% choline chloride) for 4 d, or the CD diet for 3 d and a CS diet for 1 d (CD/CS). Pemt(-/-)mice fed the CD diet for 3 d exhibited liver damage as assayed by plasma aminotransferase levels. The livers appeared normal after subsequent feeding of the CS diet for 1 d (CD/CS). The activities of plasma aminotransferases of CD/CS fed mice were comparable to Pemt(-/-)mice fed the CS diet. Hepatic PC and triacylglycerol levels as well as plasma PC levels in the CD/CS-fed Pemt(-/-)mice were lower than those of mice fed the CD diet and began to approach normal levels. Although the CD diet induces liver damage in Pemt(-/-)mice, this damage can be rapidly reversed by the addition of dietary choline.  (+info)

Kinetic analyses of liver phosphatidylcholine and phosphatidylethanolamine biosynthesis using (13)C NMR spectroscopy. (8/157)

Choline and ethanolamine are substrates for de novo synthesis of phosphatidylcholine (PtdC) and phosphatidylethanolamine (PtdE) through the CDP-choline and CDP-ethanolamine pathways. In liver, PtdE can also be converted to PtdC by PtdE N-methyltransferase (PEMT). We investigated these kinetics in rat liver during a 60 min infusion with (13)C-labeled choline and ethanolamine. NMR analyses of liver extracts provided concentrations and (13)C enrichments of phosphocholine (Pcho), phosphoethanolamine (Peth), PtdC, and PtdE. Kinetic models showed that the de novo and PEMT pathways are 'channeled' processes. The intermediary metabolites directly derived from exogenous choline and ethanolamine do not completely mix with the intracellular pools, but are preferentially used for phospholipid synthesis. Of the newly synthesized PtdC, about 70% was derived de novo and 30% was by PEMT. PtdC and PtdE de novo syntheses displayed different kinetics. A simple model assuming constant fluxes yielded a modest fit to the data; allowing upregulated fluxes significantly improved the fit. The ethanolamine-to-Peth flux exceeded choline-to-Pcho, and the rate of PtdE synthesis (1.04 micromol/h/g liver) was 2-3 times greater than that of PtdC de novo synthesis. The metabolic pathway information provided by these studies makes the NMR method superior to earlier radioisotope studies.  (+info)