Position 170 of Rabbit Na+/glucose cotransporter (rSGLT1) lies in the Na+ pathway; modulation of polarity/charge at this site regulates charge transfer and carrier turnover. (73/324)

Positions 163, 166, and 173, within the putative external loop joining transmembrane segments IV and V of rabbit Na(+)/glucose cotransporter, form part of its Na(+) interaction and voltage-sensing domain. Since a Q170C mutation within this region exhibits anomalous behavior, its function was further investigated. We used Xenopus oocytes coinjected with mouse T-antigen to enhance Q170C expression, and the two-microelectrode voltage-clamp technique. For Q170C, alpha-methyl D-glucopyranoside, phloridzin, and Na(+) affinity values are equivalent to those of wild-type; but turnover is reduced approximately 50%. Decreased [Na(+)] reduces Q170C, but not wild-type, charge transfer. Q170C presteady-state currents exhibit three time constants, tau, identical to wild-type. MTSES decreases maximal alpha-methyl D-glucopyranoside-induced currents by approximately 64% and Na(+) leak by approximately 55%; phloridzin and Na(+) affinity are unchanged. MTSES also reduces charge transfer (dithiothreitol-reversible) and Q170C turnover by approximately 60-70%. MTSEA and MTSET protect against MTSES, but neither affect Q170C function. MTSES has no obvious effect on the tau-values. Q170A behaves the same as Q170C. The mutation Q170E affects voltage sensitivity and reduces turnover, but also appears to influence Na(+) interaction. We conclude that 1), glutamine 170 lies in the Na(+) pathway in rabbit Na(+)/glucose cotransporter and 2), altered polarity and charge at position 170 affect a cotransporter conformational state and transition, which is rate-limiting, but probably not associated with empty carrier reorientation.  (+info)

Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle. (74/324)

The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a reversible decrease in total transporter number, as measured by cytochalasin B binding, in both plasma membranes and internal membranes of skeletal muscle. Changes in GLUT4 glucose transporter protein mirrored changes in cytochalasin B binding in plasma membranes. However, there was no recovery of GLUT4 levels in intracellular membranes with correction of glycaemia. GLUT4 mRNA levels decreased with hyperglycaemia and recovered only partially with correction of glycaemia. Conversely, GLUT1 glucose transporters were only detectable in the plasma membranes; the levels of this protein varied directly with glycaemia, i.e. in the opposite direction to GLUT4 glucose transporters. This study demonstrates that hyperglycaemia, in the absence of hypoinsulinaemia, is capable of down-regulating the glucose transport system in skeletal muscle, the major site of peripheral resistance to insulin-stimulated glucose transport in diabetes. Furthermore, correction of hyperglycaemia causes a complete restoration of the transport system in the basal state (determined by the transporter number in the plasma membrane), but possibly only an incomplete recovery of the transport system's ability to respond to insulin (since there is no recovery of GLUT4 levels in the intracellular membrane insulin-responsive transporter pool). Finally, the effect of hyperglycaemia is specific for glucose transporter isoforms, with GLUT1 and GLUT4 proteins varying respectively in parallel and opposite directions to levels of glycaemia.  (+info)

Posttranslational regulation of NO synthase activity in the renal medulla of diabetic rats. (75/324)

Shear stress increases nitric oxide (NO) production by endothelial cells, inner medullary collecting duct cells, and thick ascending limb. We postulated that the osmotic diuresis accompanying type 1 diabetes is associated with increased NO synthase (NOS) activity and/or expression in the renal medulla. Diabetes was induced by injection of streptozotocin, with insulin provided to maintain moderate hyperglycemia (Hyp) or euglycemia (Eug) for 3 wk. Sham rats received vehicle treatments. A separate group of rats (Phz) received phlorizin to produce a glucose-dependent osmotic diuresis. Renal medullary NOS1 and NOS2 activities did not differ between groups, whereas NOS3 activity was significantly increased in Hyp. Neither NOS1 nor NOS3 protein levels differed significantly between groups. Reduced phosphorylation of NOS3 at Thr(495) and Ser(633) was evident in medullary homogenates from Hyp rats, with no difference apparent at Ser(1177). Immunohistochemical analysis indicated prominent expression of pThr(495)NOS3 in the thick ascending limb and collecting duct of Sham and Phz rats. Hyp rats displayed staining in the collecting duct but minimal thick ascending limb staining. Immunostaining with anti-pSer(1177)NOS3 was evident only in the thick ascending limb, with no apparent differences between groups. In summary, glucose-dependent osmotic diuresis alone did not alter NOS activity or expression in the renal medulla. Diabetic hyperglycemia increased medullary NOS3 activity without a concomitant increase in NOS3 protein levels; however, NOS3 phosphorylation was reduced at Thr(495) and Ser(633). Thus changes in the phosphorylation of NOS at known regulatory sites might represent the primary mechanism underlying increased renal medullary NOS activity in diabetic hyperglycemia.  (+info)

Phloridzin improves hyperglycemia but not hepatic insulin resistance in a transgenic mouse model of type 2 diabetes. (76/324)

The chronic hyperglycemia that occurs in type 2 diabetes may cause deterioration of beta-cell function and insulin resistance in peripheral tissues. Mice that express a dominant-negative IGF-1 receptor, specifically in skeletal muscle (MKR mice), exhibit severe insulin resistance, hyperinsulinemia, dyslipidemia, and hyper-glycemia. To determine the role of hyperglycemia in the worsening of the diabetes state in these animals, MKR mice were treated with phloridzin (PHZ), which inhibits intestinal glucose uptake and renal glucose reabsorption. Blood glucose levels were decreased and urine glucose levels were increased in response to PHZ treatment in MKR mice. PHZ treatment also increased food intake in MKR mice; however, the fat mass was decreased and lean body mass did not change. Serum insulin, fatty acid, and triglyceride levels were not affected by PHZ treatment in MKR mice. Hyperinsulinemic-euglycemic clamp analysis demonstrated that glucose uptake in white adipose tissue was significantly increased in response to PHZ treatment. Despite the reduction in blood glucose following PHZ treatment, there was no improvement in insulin-stimulated whole-body glucose uptake in MKR mice and neither was there suppression of endogenous glucose production by insulin. These results suggest that glucotoxicity plays little or no role in the worsening of insulin resistance that occurs in the MKR mouse model of type 2 diabetes.  (+info)

Dynamic changes in {beta}-cell mass and pancreatic insulin during the evolution of nutrition-dependent diabetes in psammomys obesus: impact of glycemic control. (77/324)

Recent studies ascribe a major role to pancreatic beta-cell loss in type 2 diabetes. We investigated the dynamics of beta-cell mass during diabetes evolution in Psammomys obesus, a model for nutrition-dependent type 2 diabetes, focusing on the very early and the advanced stages of the disease. P. obesus fed a high-calorie diet for 26 days developed severe hyperglycemia, beta-cell degranulation, and markedly reduced pancreatic insulin content. Reducing calories for 7 days induced normoglycemia in 90% of the animals, restoring beta-cell granulation and insulin content. To dissociate effects of diet from blood glucose reduction, diabetic animals received phlorizin for 2 days, which normalized glycemia and increased the pancreatic insulin reserve to 50% of control, despite a calorie-rich diet. During diabetes progression, beta-cell mass decreased initially but recovered spontaneously to control levels, despite persistent hyperglycemia. Strikingly, however, beta-cell mass did not correlate with degree of hyperglycemia or pancreatic insulin content. We conclude that reduced insulin reserve is the main cause of diabetes progression, whereas irreversible beta-cell mass reduction is a late event in P. obesus. The rapid recovery of the pancreas by phlorizin-induced normoglycemia implies a causal relationship between hyperglycemia and islet dysfunction. Similar mechanisms could be operative during the evolution of type 2 diabetes in humans.  (+info)

Thermoprotection of a functional epithelium: heat stress effects on transepithelial transport by flounder renal tubule in primary monolayer culture. (78/324)

Primary monolayer cultures of winter flounder renal proximal-tubule cells were used to determine whether transepithelial transport could be protected from the damaging effects of extreme temperature by previous mild heat shock. Renal tubule epithelial cells were enzymatically dispersed and reorganized as confluent monolayer sheets on native rat tail collagen. Transepithelial electrical properties (potential difference, resistance, short-circuit current, and Na(+)-dependent glucose current) and unidirectional [35S]sulfate fluxes were measured in Ussing chambers at 22 degrees C. Examination of transepithelial electrical properties following acute 1-hr elevation of temperature over a range of 22-37 degrees C provided the basis for the "mild" versus "severe" thermal stress protocols. Severe elevation from 22 degrees C to 32 degrees C for 1.5 hr followed by 1.5 hr at 22 degrees C significantly decreased glucose current (7 +/- 0.7 to 3 +/- 0.8 microA/cm2) as well as net sulfate secretion [131 +/- 11 to 33 +/- 11 nmol/(cm2.hr)]. Mild heat shock of 27 degrees C for 6 hr prior to this severe heat shock completely protected both glucose transport (6 +/- 0.7 microA/cm2) and sulfate flux (149 +/- 13 nmol/(cm2.hr)]. Scanning electron microscopy showed that the number of microvilli on the apical (luminal) surface of the epithelium was decreased after a 32 degrees C heat shock. Monolayers exposed to 27 degrees C for 6 hr prior to incubation at 32 degrees C showed no loss of microvilli. SDS/PAGE analysis of protein patterns from the cultures showed that three classes of heat shock proteins were maximally induced at 27 degrees C. Inhibition of protein synthesis by cycloheximide prevented the thermoprotective effect of mild heat shock. This suggests that certain renal transport functions can be protected from sublethal but debilitating thermal stress by prior mild heat shock and that heat shock proteins may play a role in this protection.  (+info)

Plasmodial surface anion channel-independent phloridzin resistance in Plasmodium falciparum. (79/324)

The plasmodial surface anion channel (PSAC) is an unusual ion channel induced on the human red blood cell membrane after infection with the malaria parasite, Plasmodium falciparum. Because PSAC is permeant to small metabolic precursors essential for parasite growth and is present on red blood cells infected with geographically divergent parasite isolates, it may be an ideal target for future antimalarial development. Here, we used chemically induced mutagenesis and known PSAC antagonists that inhibit in vitro parasite growth to examine whether resistance mutations in PSAC can be readily induced. Stable mutants resistant to phloridzin were generated and selected within 3 weeks after treatment with 1-methyl-3-nitro-1-nitrosoguanidine. These mutants were evaluated with osmotic lysis and electrophysiological transport assays, which indicate that PSAC inhibition by phloridzin is complex with at least two different modes of inhibition. Mutants resistant to the growth inhibitory effects of phloridzin expressed PSAC activity indistinguishable from that on sensitive parasites, indicating selection of resistance via mutations in one or more other parasite targets. Failure to induce mutations in PSAC activity is consistent with a highly constrained channel protein less susceptible to resistance mutations; whether this protein is parasite- or host-encoded remains to be determined.  (+info)

Prevailing hyperglycemia is critical in the regulation of glucose metabolism during exercise in poorly controlled alloxan-diabetic dogs. (80/324)

The separate impacts of the chronic diabetic state and the prevailing hyperglycemia on plasma substrates and hormones, in vivo glucose turnover, and ex vivo skeletal muscle (SkM) during exercise were examined in the same six dogs before alloxan-induced diabetes (prealloxan) and after 4-5 wk of poorly controlled hyperglycemic diabetes (HGD) in the absence and presence of approximately 300-min phlorizin-induced (glycosuria mediated) normoglycemia (NGD). For each treatment state, the approximately 15-h-fasted dog underwent a primed continuous 150-min infusion of [3-(3)H]glucose, followed by a 30-min treadmill exercise test (approximately 65% maximal oxygen capacity), with SkM biopsies taken from the thigh (vastus lateralis) before and after exercise. In the HGD and NGD states, preexercise hepatic glucose production rose by 130 and 160%, and the metabolic clearance rate of glucose (MCRg) fell by 70 and 37%, respectively, compared with the corresponding prealloxan state, but the rates of glucose uptake into peripheral tissues (Rd(tissue)) and total glycolysis (GF) were unchanged, despite an increased availability of plasma free fatty acid in the NGD state. Exercise-induced increments in hepatic glucose production, Rd(tissue), and plasma-derived GF were severely blunted by approximately 30-50% in the NGD state, but increments in MCRg remained markedly reduced by approximately 70-75% in both diabetic states. SkM intracellular glucose concentrations were significantly elevated only in the HGD state. Although Rd(tissue) during exercise in the diabetic states correlated positively with preexercise plasma glucose and insulin and GF and negatively with preexercise plasma free fatty acid, stepwise regression analysis revealed that an individual's preexercise glucose and GF accounted for 88% of Rd(tissue) during exercise. In conclusion, the prevailing hyperglycemia in poorly controlled diabetes is critical in maintaining a sufficient supply of plasma glucose for SkM glucose uptake during exercise. During phlorizin-induced NGD, increments in both Rd(tissue) and GF are impaired due to a diminished fuel supply from plasma glucose and a sustained reduction in increments of MCRg.  (+info)