Glucose uptake via SGLT-1 is stimulated by beta(2)-adrenoceptors in the ruminal epithelium of sheep. (41/324)

Glucose absorption via the sodium glucose-linked transporter (SGLT)-1, decreases the glucose concentration in the ruminant forestomach and may ameliorate or prevent ruminal lactic acidosis. Because acidotic ruminants show increased sympathetic activity, the possibility of adrenergic modulation of SGLT-1 was investigated. Glucose uptake into ovine ruminal epithelia was measured in Ussing chambers after the addition of 200 micromol/L (14)C-labeled glucose to the mucosal solution. Glucose uptake decreased (P < 0.05) by >50% in comparison with control after mucosal addition of the SGLT-1 inhibitor, phlorizin (100 micromol/L). Serosal preincubation with 100 micromol/L epinephrine increased (P < 0.05) the phlorizin-sensitive glucose uptake in the absence and presence of indomethacin (10 micromol/L). The effect of epinephrine was simulated by beta- (100 micromol/L isoproterenol) and beta(2)-receptor agonists (10 micromol/L terbutaline), as well as by direct stimulation of adenylyl cyclase (10 micromol/L forskolin). The serosal addition of methoxamine, clonidine, dobutamine or BRL 37344 had no effect. Inhibition of protein kinase A with 2 micromol/L H 89 completely abolished the stimulation of glucose uptake by epinephrine. We conclude that ruminal SGLT-1 can be stimulated via beta(2)-dependent generation of cyclic adenosine monophosphate.  (+info)

Mobility of ions, sugar, and water in the cytoplasm of Xenopus oocytes expressing Na(+)-coupled sugar transporters (SGLT1). (42/324)

A model was set up to study water transport in membrane proteins expressed in Xenopus oocytes. The model was tested experimentally using human and rabbit Na+-glucose cotransporters (SGLT1), and was used to explain controversies regarding unstirred layer effects. Cotransport of Na+, sugar and water was monitored by two-electrode voltage clamp and online measurements of oocyte volume. The specific resistance of the oocyte cytoplasm was found by means of microelectrodes to be 263 +/- 91 Omega cm (S.D., n = 52), or 2.5 times that of Kulori medium, in agreement with reported values of intracellular ion concentrations and diffusion constants. Osmotically induced volume and resistance changes were compatible with a model of the oocyte in which 37 +/- 17 % (S.D., n = 66) of the intracellular volume acts as a free solution while the remainder is inert, being occupied by organelles, etc. The model explains the results of several types of experiments: rapid changes in rates of water cotransport induced by changes in clamp voltage followed by osmotic equilibration in sugar-free conditions; volume changes induced by Na+ transport via the ionophore gramicidin; and uphill water transport. Ethanol (0.5 %) induced a marked swelling of the oocytes of about 16 pl x s(-1). If the specific inhibitor of SGLT1 phlorizin is added from stock solutions in ethanol, the effect of ethanol obfuscates the effects of the inhibitor. We conclude that the transport parameters derived for water cotransport by the SGLT1 can be attributed to the protein residing in the plasma membrane with no significant influences from unstirred layer effects.  (+info)

Transporter-mediated absorption is the primary route of entry and is required for passive absorption of intestinal glucose into the blood of conscious dogs. (43/324)

To determine the contributions of transporter-mediated and passive absorption during an intraduodenal glucose infusion in a large animal model, six mongrel dogs had sampling catheters (portal vein, femoral artery, duodenum), infusion catheters (vena cava, duodenum) and a portal vein flow probe implanted 17 d before an experiment. Protocols consisted of a basal (-30 to 0 min) and an experimental (0-90 min) period. An intraduodenal glucose infusion of 44 micromol/(kg. min) was initiated at t = 0 min. At t = 20 and 80 min, 3-O-[3H]methylglucose and L-[14C]glucose (L-Glc) were injected intraduodenally. Phloridzin, an inhibitor of the Na+/K+ ATP-dependent transporter (SGLT1), was infused from t = 60 to 90 min in the presence of a peripheral isoglycemic clamp. Net gut glucose output was 21.1 +/- 3.0 micromol/(kg. min) from t = 0 to 60 min. Transporter-mediated glucose absorption was calculated using three approaches, which involved either direct measurements or indirect estimates of duodenal glucose analog radioactivities, to account for the assumptions and difficulties inherent to duodenal sampling. Values were essentially the same regardless of calculations used because transporter-mediated absorption was 89 +/- 1%, 90 +/- 2% and 91 +/- 2% of net gut glucose output. Phloridzin-induced inhibition of transporter-mediated absorption completely abolished passive absorption of L-Glc. We conclude that in dogs, transporter-mediated glucose absorption constitutes the vast majority of glucose absorbed from the gut and is required for passive glucose absorption. The method described here is applicable to investigation of the mechanisms of gut glucose absorption under a variety of nutritional, physiologic and pathophysiologic conditions.  (+info)

Identification of a novel Na+/myo-inositol cotransporter. (44/324)

rkST1, an orphan cDNA of the SLC5 family (43% identical in sequence to the sodium myo-inositol cotransporter SMIT), was expressed in Xenopus laevis oocytes that were subsequently voltage-clamped and exposed to likely substrates. Whereas superfusion with glucose and other sugars produced a small inward current, the largest current was observed with myo-inositol. The expressed protein, which we have named SMIT2, cotransports myo-inositol with a K(m) of 120 microm and displays a current-voltage relationship similar to that seen with SMIT (now called SMIT1). The transport is Na(+)-dependent, with a K(m) of 13 mm. SMIT2 exhibits phlorizin-inhibitable presteady-state currents and substrate-independent "Na(+) leak" currents similar to those of related cotransporters. The steady-state cotransport current is also phlorizin-inhibitable with a K(i) of 76 microm. SMIT2 exhibits stereospecific cotransport of both d-glucose and d-xylose but does not transport fucose. In addition, SMIT2 (but not SMIT1) transports d-chiro-inositol. Based on previous publications, the tissue distribution of SMIT2 is different from that of SMIT1, and the existence of this second cotransporter may explain much of the heterogeneity that has been reported for inositol transport.  (+info)

Intrahepatic bile ducts transport water in response to absorbed glucose. (45/324)

The physiological relevance of the absorption of glucose from bile by cholangiocytes remains unclear. The aim of this study was to test the hypothesis that absorbed glucose drives aquaporin (AQP)-mediated water transport by biliary epithelia and is thus involved in ductal bile formation. Glucose absorption and water transport by biliary epithelia were studied in vitro by microperfusing intrahepatic bile duct units (IBDUs) isolated from rat liver. In a separate set of in vivo experiments, bile flow and absorption of biliary glucose were measured after intraportal infusion of D-glucose or phlorizin. IBDUs absorbed D-glucose in a dose- and phlorizin-dependent manner with an absorption maximum of 92.8 +/- 6.2 pmol. min(-1). mm(-1). Absorption of D-glucose by microperfused IBDUs resulted in an increase of water absorption (J(v) = 3-10 nl. min(-1). mm(-1), P(f) = 40 x 10(-3) cm/sec). Glucose-driven water absorption by IBDUs was inhibited by HgCl(2), suggesting that water passively follows absorbed D-glucose mainly transcellularly via mercury-sensitive AQPs. In vivo studies showed that as the amount of absorbed biliary glucose increased after intraportal infusion of D-glucose, bile flow decreased. In contrast, as the absorption of biliary glucose decreased after phlorizin, bile flow increased. Results support the hypothesis that the physiological significance of the absorption of biliary glucose by cholangiocytes is likely related to regulation of ductal bile formation.  (+info)

AICAR and phlorizin reverse the hypoglycemia-specific defect in glucagon secretion in the diabetic BB rat. (46/324)

Individuals with type 1 diabetes demonstrate a hypoglycemia-specific defect in glucagon secretion. To determine whether intraislet hyperinsulinemia plays a role in the genesis of this defect, glucagon-secretory responses to moderate hypoglycemia induced by either insulin or a novel combination of the noninsulin glucose-lowering agents 5-aminoimidazole-4-carboxamide (AICAR) and phlorizin were compared in diabetic BB rats (an animal model of type 1 diabetes) and nondiabetic BB rats. The phlorizin-AICAR combination was able to induce moderate and equivalent hypoglycemia in both diabetic and nondiabetic BB rats in the absence of marked hyperinsulinemia. Diabetic BB rats demonstrated impaired glucagon and epinephrine responses during insulin-induced hypoglycemia compared with nondiabetic rats. In contrast, both glucagon (9- to 10-fold increase) and epinephrine (5- to 6-fold increase) responses were markedly improved during phlorizin-AICAR hypoglycemia. Combining phlorizin, AICAR, and insulin attenuated the glucagon response to hypoglycemia by 70% in the diabetic BB rat. Phlorizin plus AICAR had no effect on counterregulatory hormones under euglycemic conditions. We conclude that alpha-cell glucagon secretion in response to hypoglycemia is not defective if intraislet hyperinsulinemia is prevented. This suggests that exogenous insulin plays a pivotal role in the etiology of this defect.  (+info)

Influence of food deprivation on the transport of 3-O-methyl-alpha-D-glucose across the isolated ruminal epithelium of sheep. (47/324)

Recent studies provided evidence that the ruminal epithelium is able to absorb D-glucose even at physiologically low intraruminal concentrations. To elucidate whether ruminal D-glucose transport shows adaptive responses during food deprivation, transport of 3-0-methyl-alpha-D-glucose (3-OMG), a hardly metabolizable D-glucose analogue, was measured in isolated ruminal epithelia obtained from hay-fed or food-deprived adult sheep. In both groups, a significant net absorption of 3-OMG to the serosal side (in vivo: blood side oriented) could be detected at 3-OMG concentrations between 0.25 mM and 5 mM. Net absorption of 3-OMG was abolished by mucosal (in vivo: lumen side oriented) addition of phlorizin, an inhibitor of the sodium glucose-linked transporter 1 (SGLT-1). Net absorption of 3-OMG followed Michaelis-Menten kinetics, but apparent affinity and maximal transport capacity were lower in epithelia obtained from food-deprived sheep. In contrast to the decrease of the (secondary) active 3-OMG transport, serosal-to-mucosal permeation of 3-OMG increased after food deprivation, suggesting an elevated passive 3-OMG transfer. It is concluded that the altered transport characteristics are either part of a global energy-sparing process during food deprivation (i.e., a lowered activity of the Na+/K+-ATPase) or result from specific down-regulation of SGLT-1.  (+info)

pH dependence of Na+/myo-inositol cotransporters in rat thick limb cells. (48/324)

BACKGROUND: To balance medullary interstitium hypertonicity generated by transepithelial NaCl absorption, medullary thick ascending limb (MTAL) cells accumulate myo-inositol (MI). Expression of Na+-MI cotransporter (SMIT) mRNA in TAL is correlated with the NaCl absorption rate. Our present study aimed to determine the plasma membrane location and functional properties of the Na+-MI cotransporter in MTAL cells. METHODS: Preparation of basolateral (BLMV) and luminal (LMV) membrane vesicles were simultaneously isolated from purified rat MTAL suspension, and uptake of [3H]myo-inositol ([3H]MI) was used to assess Na+-MI cotransport activity. RESULTS: In the presence of an inside-negative membrane potential, imposing an inwardly-directed Na+-gradient versus tetramethylammonium (TMA) stimulated the initial [3H]MI uptake in BLMV and LMV. Phlorizin inhibited Na+ gradient-dependent initial [3H]MI uptake in both preparations, with IC50 values of 565 and 29 micromol/L in BLMV and LMV, respectively. 2-0,C-methylene myo-inositol (MMI), a competitive inhibitor of MI transport, only inhibited the BLMV Na+-MI cotransporter. Phlorizin-sensitive Na+ gradient-dependent initial [3H]MI uptake showed Michaelis-Menten kinetics in both preparations, with similar Vmax but different Km values of 51 and 107 micromol/L in BLMV and LMV, respectively. Finally, BLMV but not LMV Na+-MI cotransporter exhibited a marked pH dependence with sigmoidal patterns of activation, as intravesicular pH (pHi) was decreased from 8.0 to 6.0 at extravesicular pH (pHe) 8.0, and as pHe was increased from 6.0 to 8.0 at pHi 6.0. Maximal activation was observed at pHi 6.5 and pHe 7.5. CONCLUSIONS: In rat MTAL cells, Na+-MI cotransporter activity is present in both BLM and LM, and has markedly different functional properties, indicating the presence of distinct transporters. Basolateral Na+-MI cotransporter activity is maximal at physiological pH values of MTAL cells and interstitium, and a powerful modulation of the transporter activity may be exerted by pHe and pHi.  (+info)