(1/65) Antimycobacterial activities of isoxyl and new derivatives through the inhibition of mycolic acid synthesis.

Isoxyl (ISO), a thiourea (thiocarlide; 4, 4'-diisoamyloxythiocarbanilide), demonstrated potent activity against Mycobacterium tuberculosis H37Rv (MIC, 2.5 micrograms/ml), Mycobacterium bovis BCG (MIC, 0.5 microgram/ml), Mycobacterium avium (MIC, 2.0 microgram/ml), and Mycobacterium aurum A+ (MIC, 2.0 microgram/ml), resulting in complete inhibition of mycobacteria grown on solid media. Importantly, a panel of clinical isolates of M. tuberculosis from different geographical areas with various drug resistance patterns were all sensitive to ISO in the range of 1 to 10 microgram/ml. In a murine macrophage model, ISO exhibited bactericidal killing of viable intracellular M. tuberculosis in a dose-dependent manner (0.05 to 2.50 microgram/ml). The selective action of ISO on mycolic acid synthesis was studied through the use of [1, 2-14C]acetate labeling of M. tuberculosis H37Rv, M. bovis BCG, and M. aurum A+. At its MIC for M. tuberculosis, ISO inhibited the synthesis of both fatty acids and mycolic acids (alpha-mycolates by 91.6%, methoxymycolates by 94.3%, and ketomycolates by 91.1%); at its MIC in M. bovis BCG, ISO inhibited the synthesis of alpha-mycolates by 87.2% and that of ketomycolates by 88.5%; and the corresponding inhibitions for M. aurum A+ were 87.1% for alpha-mycolates, 87.2% for ketomycolates, and 86.5% for the wax-ester mycolates. A comparison with isoniazid (INH) and ethionamide (ETH) demonstrated marked similarity in action, i.e., inhibition of the synthesis of all kinds of mycolic acids. However, unlike INH and ETH, ISO also inhibited the synthesis of shorter-chain fatty acids. ISO showed no acute toxicity against primary macrophage cell cultures as demonstrated by diminution of redox activity. A homologous series of ISO derivatives were synthesized. Most derivatives were as effective or more effective than the parent compound in the agar proportion assay. Thus, these thioureas, like INH and ETH, specifically inhibit mycolic acid synthesis and show promise in counteracting a wide variety of drug-sensitive and -resistant strains of M. tuberculosis.  (+info)

(2/65) Taste receptor cells that discriminate between bitter stimuli.

Recent studies showing that single taste bud cells express multiple bitter taste receptors have reignited a long-standing controversy over whether single gustatory receptor cells respond selectively or broadly to tastants. We examined calcium responses of rat taste receptor cells in situ to a panel of bitter compounds to determine whether individual cells distinguish between bitter stimuli. Most bitter-responsive taste cells were activated by only one out of five compounds tested. In taste cells that responded to multiple stimuli, there were no significant associations between any two stimuli. Bitter sensation does not appear to occur through the activation of a homogeneous population of broadly tuned bitter-sensitive taste cells. Instead, different bitter stimuli may activate different subpopulations of bitter-sensitive taste cells.  (+info)

(3/65) Shaping of colony elements in Laomedea flexuosa Hinks (Hydrozoa, Thecaphora) includes a temporal and spatial control of skeleton hardening.

The colonies of thecate hydroids are covered with a chitinous tubelike outer skeleton, the perisarc. The perisarc shows a species-specific pattern of annuli, curvatures, and smooth parts. This pattern is exclusively formed at the growing tips at which the soft perisarc material is expelled by the underlying epithelium. Just behind the apex of the tip, this material hardens. We treated growing cultures of Laomedea flexuosa with substances we suspected would interfere with the hardening of the perisarc (L-cysteine, phenylthiourea) and those we expected would stimulate it (dopamine, N-acetyldopamine). We found that the former caused a widening of and the latter a reduction in the diameter of the perisarc tube. At the same time, the length of the structure elements changed so that the volume remained almost constant. We propose that normal development involves a spatial and temporal regulation of the hardening process. When the hardening occurs close to the apex, the diameter of the tube decreases. When it takes place farther from the apex, the innate tendency of the tip tissue to expand causes a widening of the skeleton tube. An oscillation of the position at which hardening takes place causes the formation of annuli.  (+info)

(4/65) Interactions and regulation of molecular motors in Xenopus melanophores.

Many cellular components are transported using a combination of the actin- and microtubule-based transport systems. However, how these two systems work together to allow well-regulated transport is not clearly understood. We investigate this question in the Xenopus melanophore model system, where three motors, kinesin II, cytoplasmic dynein, and myosin V, drive aggregation or dispersion of pigment organelles called melanosomes. During dispersion, myosin V functions as a "molecular ratchet" to increase outward transport by selectively terminating dynein-driven minus end runs. We show that there is a continual tug-of-war between the actin and microtubule transport systems, but the microtubule motors kinesin II and dynein are likely coordinated. Finally, we find that the transition from dispersion to aggregation increases dynein-mediated motion, decreases myosin V--mediated motion, and does not change kinesin II--dependent motion. Down-regulation of myosin V contributes to aggregation by impairing its ability to effectively compete with movement along microtubules.  (+info)

(5/65) Insensitivity to the bitter taste of chloramphenicol: an autosomal recessive trait.

Sensitivity to the bitter taste of chloramphenicol was studied in 860 students, 620 males and 240 females. About 8.6% of them were insensitive to this bitter taste. Familial lineage studies were carried out on a subset of these students, and the results suggested that the sensitivity or insensitivity was controlled by a pair of autosomal Mendelian genes, with the sensitive gene being dominant over the insensitive.  (+info)

(6/65) Repulsion of bacteria from marine surfaces.

Organic compounds are capable of repelling motile bacteria from marine surfaces. The most effective compounds were acrylamide and benzoic and tannic acids. These were active at concentrations that were not toxic to the bacteria. Repellents were incorporated in nontoxic paints and applied to metal panels. Treated panels immersed in seawater developed a bacterial film of only 10(6) bacteria per cm6 after 12 days compared with untreated panels, which had 5 times 10(12) bacteria per cm2 after the same period. Field studies confirmed the effectiveness of these repellents. The use of biological repellents provides a new approach to the control of marine fouling.  (+info)

(7/65) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide.

The ability to taste the substance phenylthiocarbamide (PTC) has been widely used for genetic and anthropological studies, but genetic studies have produced conflicting results and demonstrated complex inheritance for this trait. We have identified a small region on chromosome 7q that shows strong linkage disequilibrium between single-nucleotide polymorphism (SNP) markers and PTC taste sensitivity in unrelated subjects. This region contains a single gene that encodes a member of the TAS2R bitter taste receptor family. We identified three coding SNPs giving rise to five haplotypes in this gene worldwide. These haplotypes completely explain the bimodal distribution of PTC taste sensitivity, thus accounting for the inheritance of the classically defined taste insensitivity and for 55 to 85% of the variance in PTC sensitivity. Distinct phenotypes were associated with specific haplotypes, which demonstrates that this gene has a direct influence on PTC taste sensitivity and that sequence variants at different sites interact with each other within the encoded gene product.  (+info)

(8/65) Elimination of shrimp endogenous peroxidase background in immunodot blot assays to detect white spot syndrome virus (WSSV).

False positive results were obtained in immunodot blot assays to detect white spot syndrome virus when horseradish peroxidase-conjugated sheep anti-mouse immunoglobin (Ig) serum was used as a secondary antibody with 3-3'-diaminobenzine tetrahydrochloride dihydrate as the detection substrate. The cause was considered to be a reaction of shrimp endogenous peroxidase (POD) with the substrate. In experiments designed to inhibit POD activity, 9 different reagents were used at different concentrations and for different treatment times. EDTA, sodium azide, HEPES-Na, NaHSO3, H2O2 and phenylthiourea (PTU) were able to inhibit POD activity by 44, 60, 64, 67, 79, and 90%, respectively. Phenylmethylsulfonyl fluoride did not inhibit POD, and neither periodic acid nor H2O2 in methanol were appropriate due to the formation of flocculant precipitates when added to shrimp extracts. It was concluded that of the treatments tested, 10 mM PTU for 2 h yielded optimal inhibition and that such pretreatment of samples eliminates false positive results in immunodot blot assays.  (+info)