Robiginitalea biformata gen. nov., sp. nov., a novel marine bacterium in the family Flavobacteriaceae with a higher G+C content. (73/571)

Two Gram-negative, chemoheterotrophic, non-motile, rust-coloured, marine strains were isolated from the western Sargasso Sea by high-throughput culturing. Characterization of the two strains by polyphasic approaches indicated that they are members of the same species. Phylogenetic analyses based on 16S rRNA gene sequences using three treeing algorithms revealed that the strains formed a coherent and novel genus-level lineage within the family Flavobacteriaceae. The dominant fatty acids were branched or hydroxy acids, i15 : 0, i15 : 1 and 3-OH i17 : 0 being the most abundant. The higher DNA G+C content of the strains (55-56 mol%) clearly differentiated them from other genera of the family Flavobacteriaceae (27-44 mol%). It is proposed, from the polyphasic evidence, that the strains be placed into a novel genus and a novel species named Robiginitalea biformata gen. nov., sp. nov., with strain HTCC2501T (=ATCC BAA-864T=KCTC 12146T) as the type strain.  (+info)

Salegentibacter holothuriorum sp. nov., isolated from the edible holothurian Apostichopus japonicus. (74/571)

Strain KMM 3524T was isolated from the holothurian Apostichopus japonicus living in the Sea of Japan. The bacterial strain was pigmented, non-motile, Gram-negative, strictly aerobic and oxidase-, catalase- and beta-galactosidase-positive. From the results of 16S rDNA sequence analysis, strain KMM 3524T was found to be related closely to Salegentibacter salegens (98.1%). DNA-DNA homology between strains KMM 3524T and S. salegens DSM 5424T was 38%; this showed clearly that the holothurian isolate KMM 3524T belongs to a novel species of the genus Salegentibacter for which the name Salegentibacter holothuriorum sp. nov. is proposed, with KMM 3524T (=NBRC 100249T=LMG 21968T) as the type strain.  (+info)

Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. (75/571)

A Gram-negative, rod-shaped, non-spore-forming, slightly halophilic bacterium (strain TF-17T) was isolated from an intertidal sediment from the Yellow Sea, Korea. Pigment of strain TF-17T was similar to that of Microbulbifer elongatus, but different from those of Microbulbifer hydrolyticus and Microbulbifer salipaludis. Strain TF-17T was distinguishable from M. elongatus by some phenotypic properties, including motility, optimal growth temperature and others. Phylogenetic analysis based on 16S rDNA sequences showed that strain TF-17TT clustered with the type strains of the three Microbulbifer species with validly published names. Strain TF-17T exhibited 16S rDNA sequence similarity levels of 95.1-95.7% to the type strains of the three Microbulbifer species. The predominant respiratory lipoquinone found in strain TF-17T was ubiquinone-8. The major fatty acid was iso-C(15 : 0) and significant amounts of iso-C(11 : 0) 3-OH and iso-C(17 : 1)omega9c were also present. The DNA G+C content of strain TF-17T was 59.9 mol%. Levels of DNA-DNA relatedness between strain TF-17T and the type strains of the three Microbulbifer species were in the range 10.0-13.0%. On the basis of phenotypic and phylogenetic data and genotypic distinctiveness, strain TF-17T (=KCCM 41774T=JCM 12187T) is proposed as the type strain of a novel species of the genus Microbulbifer, Microbulbifer maritimus sp. nov.  (+info)

Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-beta-hydroxybutyrate-producing marine bacteria in the order 'Rhodobacterales'. (76/571)

Three Gram-negative, chemoheterotrophic, non-motile, rod-shaped bacterial strains that accumulate poly-beta-hydroxybutyrate granules were isolated from the Bermuda Atlantic Time-series Study site by high-throughput culturing methods and characterized by polyphasic approaches. DNA-DNA hybridization, DNA G+C content and phylogenetic analyses based on 16S rRNA gene sequences divided the three isolates into two distinct genospecies that were clearly differentiated by fatty acid profiles, carbon source utilization patterns, antibiotic susceptibility and biochemical characteristics. The strains utilized a wide range of substrates, including pentoses, hexoses, oligosaccharides, sugar alcohols, organic acids and amino acids. DNA G+C contents were 71.5, 70.9 and 67.3 mol% for strains HTCC2516T, HTCC2523 and HTCC2597T, respectively. The most dominant fatty acid was 18 : 1omega7c in strains HTCC2516T and HTCC2523, and cyclo 19 : 0 in strain HTCC2597T. The type strains HTCC2516T and HTCC2597T were clearly differentiated by the presence or absence of 12 : 0, 12 : 1omega11c, 14 : 0, 15 : 0 and methyl 18 : 1. Phylogenetic analyses indicated that the strains formed a distinct monophyletic lineage within the Roseobacter clade in the order 'Rhodobacterales' of the Alphaproteobacteria, and which did not associate with any of the described genera. Genotypic and phenotypic differences of the isolates from the previously described genera support the description of Oceanicola granulosus gen. nov., sp. nov. with the type strain HTCC2516T (=ATCC BAA-861T=DSM 15982T=KCTC 12143T) and of Oceanicola batsensis sp. nov. with the type strain HTCC2597T (=ATCC BAA-863T=DSM 15984T=KCTC 12145T).  (+info)

Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. (77/571)

Seven novel, cold-adapted, strictly aerobic, facultatively oligotrophic strains, isolated from Antarctic sea water, were investigated by using a polyphasic taxonomic approach. The isolates were Gram-negative, chemoheterotrophic, motile, rod-shaped cells that were psychrotolerant and moderately halophilic. Buds were produced on mother and daughter cells and on prosthecae. Prostheca formation was peritrichous and prosthecae could be branched. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains belong to the gamma-Proteobacteria and are related to the genus Alteromonas, with 98.3% sequence similarity to Alteromonas macleodii and 98.0% to Alteromonas marina, their nearest phylogenetic neighbours. Whole-cell fatty acid profiles of the isolates were very similar and included C(16 : 0), C(16 : 1)omega7c, C(17 : 1)omega8c and C(18 : 1)omega8c as the major fatty acid components. These results support the affiliation of these isolates to the genus Alteromonas. DNA-DNA hybridization results and differences in phenotypic characteristics show that the strains represent a novel species with a DNA G+C content of 43-45 mol%. The name Alteromonas stellipolaris sp. nov. is proposed for this novel species; the type strain is ANT 69aT (=LMG 21861T=DSM 15691T). An emended description of the genus Alteromonas is given.  (+info)

Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. (78/571)

A water sample from the North Sea was used to isolate the abundant heterotrophic bacteria that are able to grow on complex marine media. Isolation was by serial dilution and spread plating. Phylogenetic analysis of nearly complete 16S rRNA gene sequences revealed that one of the strains, HEL-45T, had 97.4% sequence similarity to Sulfitobacter mediterraneus and 96.5 % sequence similarity to Staleya guttiformis. Strain HEL-45T is a Gram-negative, non-motile rod and obligate aerobe and requires sodium and 1-7% sea salts for growth. It contains storage granules and does not produce bacteriochlorophyll. Optimal growth temperatures are 25-30 degrees C. The DNA base composition (G+C content) is 60.1 mol%. Strain HEL-45T has Q10 as the dominant respiratory quinone. The major polar lipids are phosphatidyl glycerol, diphosphatidyl glycerol, phosphatidyl choline, phosphatidyl ethanolamine and an aminolipid. The fatty acids comprise 18 : 1omega7c, 18 : 0, 16 : 1omega7c, 16 : 0, 3-OH 10 : 0, 3-OH 12 : 1 (or 3-oxo 12 : 0) and traces of an 18 : 2 fatty acid. Among the hydroxylated fatty acids only 3-OH 12 : 1 (or 3-oxo 12 : 0) appears to be amide linked, whereas 3-OH 10 : 0 appears to be ester linked. The minor fatty acid components (between 1 and 7%) allow three subgroups to be distinguished in the Sulfitobacter/Staleya clade, placing HEL-45T into a separate lineage characterized by the presence of 3-OH 12 : 1 (or 3-oxo 12 : 0) and both ester- and amide-linked 16 : 1omega7c phospholipids. HEL-45T produces indole and derivatives thereof, several cyclic dipeptides and thryptanthrin. Phylogenetic analysis of 16S rRNA gene sequences and chemotaxonomic data support the description of a new genus and species, to include Oceanibulbus indolifex gen. nov., sp. nov., with the type strain HEL-45T (=DSM 14862T=NCIMB 13983T).  (+info)

Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). (79/571)

A novel species, Swaminathania salitolerans gen. nov., sp. nov., was isolated from the rhizosphere, roots and stems of salt-tolerant, mangrove-associated wild rice (Porteresia coarctata Tateoka) using nitrogen-free, semi-solid LGI medium at pH 5.5. Strains were Gram-negative, rod-shaped and motile with peritrichous flagella. The strains grew well in the presence of 0.35% acetic acid, 3% NaCl and 1% KNO3, and produced acid from l-arabinose, d-glucose, glycerol, ethanol, d-mannose, d-galactose and sorbitol. They oxidized ethanol and grew well on mannitol and glutamate agar. The fatty acids 18 : 1omega7c/omega9t/omega12t and 19 : 0cyclo omega8c constituted 30.41 and 11.80% total fatty acids, respectively, whereas 13 : 1 AT 12-13 was found at 0.53%. DNA G+C content was 57.6-59.9 mol% and the major quinone was Q-10. Phylogenetic analysis based on 16S rRNA gene sequences showed that these strains were related to the genera Acidomonas, Asaia, Acetobacter, Gluconacetobacter, Gluconobacter and Kozakia in the Acetobacteraceae. Isolates were able to fix nitrogen and solubilized phosphate in the presence of NaCl. Based on overall analysis of the tests and comparison with the characteristics of members of the Acetobacteraceae, a novel genus and species is proposed for these isolates, Swaminathania salitolerans gen. nov., sp. nov. The type strain is PA51T (=LMG 21291T=MTCC 3852T).  (+info)

Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. (80/571)

A Gram-negative, motile, non-spore-forming, rod-shaped bacterium, designated strain TF-22T, was isolated from an intertidal sediment in Korea. This organism grew optimally at 30-37 degrees C and in the presence of 2-5% (w/v) NaCl. It did not grow without NaCl or in the presence of more than 14% (w/v) NaCl. Strain TF-22T was characterized chemotaxonomically as having ubiquinone-8 as the predominant respiratory lipoquinone and C(16 : 0), C(16 : 1) omega7c and/or iso-C(15 : 0) 2-OH and C(18 : 1) omega7c as the major fatty acids. The DNA G+C content of strain TF-22T was 46.0 mol%. Phylogenetic analyses based on 16S rDNA sequences showed that strain TF-22T falls within the gamma-subclass of the Proteobacteria and forms a coherent cluster with Alteromonas macleodii and Alteromonas marina. Levels of 16S rDNA similarity between strain TF-22T and the type strains of two Alteromonas species were in the range 98.1-98.6%. The level of DNA-DNA relatedness between strain TF-22T and the type strains of two Alteromonas species was 15.7-18.5%. Therefore, on the basis of phenotypic properties, phylogeny and genomic distinctiveness, strain TF-22T should be placed in the genus Alteromonas as a novel species, for which the name Alteromonas litorea sp. nov. is proposed. The type strain is TF-22TT (=KCCM 41775T=JCM 12188T).  (+info)