Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas. (49/161)

To investigate ethylene's role in petal senescence, a comparative analysis of age-related changes in total protein, protease activity, and the expression of nine cysteine protease genes in the corollas of ethylene-sensitive Petuniaxhybrida cv. Mitchell Diploid (MD) and ethylene-insensitive (35S:etr1-1; line 44568) transgenic petunias was conducted. The later stages of corolla senescence in MD flowers were associated with decreased fresh weight, decreased total protein, and increased proteolytic activity. Corolla senescence was delayed by approximately 8 d in etr-44568 transgenic petunias, and decreases in corolla fresh weight, protein content, and maximum proteolytic activity were similarly delayed. Protease inhibitor studies indicated that the majority of the protease activity in senescing petals was due to cysteine proteases. Nine cysteine proteases expressed in petals were subsequently identified. Northern blot analysis indicated that six of the nine cysteine proteases showed increased transcript abundance during petal senescence. One of these cysteine proteases, PhCP10, was detected only in senescing tissues. Expression of four of the senescence-associated cysteine proteases was delayed, but not prevented in etr-44568 flowers. The other two senescence associated cysteine proteases had high levels of transcript accumulation in etr-44568 corollas at 8 d after flower opening, when MD flowers were senescing. These patterns suggest that age-related factors, other than ethylene, were regulating the up-regulation of these genes during flower ageing. The delay in visible symptoms and biochemical and molecular indicators of senescence in ethylene-insensitive flowers is consistent with the concept that ethylene modulates the timing of senescence pathways in petals.  (+info)

In vivo imaging of MADS-box transcription factor interactions. (50/161)

MADS-box transcription factors are major regulators of development in flowering plants. The factors act in a combinatorial manner, either as homo- or heterodimers, and they control floral organ formation and identity and many other developmental processes through a complex network of protein-protein and protein-DNA interactions. Despite the fact that many studies have been carried out to elucidate MADS-box protein dimerization by yeast systems, very little information is available on the behaviour of these molecules in planta. Here, evidence for specific interactions between the petunia MADS-box proteins FBP2, FBP11, and FBP24 is provided in vivo. The dimers identified in yeast for the ovule-specific FBP24 protein have been confirmed in living plant cells by means of fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy and, in addition, some of the most likely, less stable homo- and heterodimers were identified. This in vivo approach revealed that particular dimers could only be detected in specific sub-nuclear domains. In addition, evidence for the in planta assembly of these ovule-specific MADS-box transcription factors into higher-order complexes is provided.  (+info)

Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. (51/161)

Flavonoids are important secondary metabolites in many fruits, and their hydroxylation pattern determines their color, stability, and antioxidant capacity. Hydroxylation of the B-ring of flavonoids is catalyzed by flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H), and may also require cytochrome b5. We report the identification of genes encoding F3'H, F3'5'H, and a putative cytochrome b5 from grapevine (Vitis vinifera L. cv Shiraz) and their transcriptional regulation in fruit. Functionality of the genes VvF3'H and VvF3'5'H1 was demonstrated by ectopic expression in petunia (Petunia hybrida), which altered flower color and flavonoid composition as expected. VvF3'H was expressed in grapes before flowering, when 3'-hydroxylated flavonols are made, and all three genes were expressed after flowering, when proanthocyanidins (PAs) are synthesized. In berry skin, expression of all three genes was low at the onset of ripening (veraison) but increased after veraison concomitant with the accumulation of 3'- and 3',5'-hydroxylated anthocyanins. VvF3'H and VvCytoB5 were expressed in seeds but not VvF3'5'H1, consistent with the accumulation of 3'-hydroxylated PAs in this tissue. VvCytoB5 expression was correlated with expression of both VvF3'H and VvF3'5'H1 in the different grape tissues. In contrast to red grapes, where VvF3'H, VvF3'5'H1, and VvCytoB5 were highly expressed during ripening, the expression of VvF3'5'H1 and VvCytoB5 in white grapes during ripening was extremely low, suggesting a difference in transcriptional regulation. Our results show that temporal and tissue-specific expression of VvF3'H, VvF3'5'H1, and VvCytoB5 in grapes is coordinated with the accumulation of the respective hydroxylated flavonols and PAs, as well as anthocyanins. Understanding the regulation of flavonoid hydroxylases could be used to modify flavonoid composition of fruits.  (+info)

Localization of pectins and Ca2+ ions in unpollinated and pollinated wet (Petunia hybrida Hort.) and dry (Haemanthus albiflos L.) stigma. (52/161)

The subcellular localization of Ca2+ ions as well as esterified and deesterified pectins in unpollinated and pollinated wet (Petunia hybrida) and dry (Haemanthus albiflos) stigma was analyzed. Stigmas with different surfaces were found to differ in Ca2+ and pectin localization. In a wet Petunia hybrida stigma, Ca2+ ions were present in the exudate occurring in the intercellular spaces of secretory tissue before pollination. The exudate of an unpollinated stigma was the site of the localization of large amounts of deesterified pectins. Stigma penetration by pollen tubes induced the lysis of this category of pectins. The epidermal cells walls of the dry Haemanthus albiflos stigma before pollination lacked free and loosely bound Ca2+ ions. Pollination induced an accumulation of these ions in the apoplast of the stigma epidermal cells. In cells walls of an unpollinated stigma, mainly esterified pectins were present. Their deesterification took place after pollination at the site of pollen grain adhesion and then at the site of pollen tube growth. These results have shown that wet and dry stigmas differ in pectin metabolism and in the mechanism of forming a calcium environment at the site of pollen grain germination.  (+info)

Control of floral meristem determinacy in petunia by MADS-box transcription factors. (53/161)

The shoot apical meristem (SAM), a small group of undifferentiated dividing cells, is responsible for the continuous growth of plants. Several genes have been identified that control the development and maintenance of the SAM. Among these, WUSCHEL (WUS) from Arabidopsis (Arabidopsis thaliana) is thought to be required for maintenance of a stem cell pool in the SAM. The MADS-box gene AGAMOUS, in combination with an unknown factor, has been proposed as a possible negative regulator of WUS, leading to the termination of meristematic activity within the floral meristem. Transgenic petunia (Petunia hybrida) plants were produced in which the E-type and D-type MADS-box genes FLORAL BINDING PROTEIN2 (FBP2) and FBP11, respectively, are simultaneously overexpressed. These plants show an early arrest in development at the cotyledon stage. Molecular analysis of these transgenic plants revealed a possible combined action of FBP2 and FBP11 in repressing the petunia WUS homolog, TERMINATOR. Furthermore, the ectopic up-regulation of the C-type and D-type homeotic genes FBP6 and FBP7, respectively, suggests that they may also participate in a complex, which causes the determinacy in transgenic plants. These data support the model that a transcription factor complex consisting of C-, D-, and E-type MADS-box proteins controls the stem cell population in the floral meristem.  (+info)

Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. (54/161)

Calcium is a key regulator of pollen tube growth, but little is known concerning the downstream components of the signaling pathways involved. We identified two pollen-expressed calmodulin-like domain protein kinases from Petunia inflata, CALMODULIN-LIKE DOMAIN PROTEIN KINASE1 (Pi CDPK1) and Pi CDPK2. Transient overexpression or expression of catalytically modified Pi CDPK1 disrupted pollen tube growth polarity, whereas expression of Pi CDPK2 constructs inhibited tube growth but not polarity. Pi CDPK1 exhibited plasma membrane localization most likely mediated by acylation, and we present evidence that suggests this localization is critical to the biological function of this kinase. Pi CDPK2 substantially localized to as yet unidentified internal membrane compartments, and this localization was again, at least partially, mediated by acylation. In contrast with Pi CDPK1, altering the localization of Pi CDPK2 did not noticeably alter the effect of overexpressing this isoform on pollen tube growth. Ca(2+) requirements for Pi CDPK1 activation correlated closely with Ca(2+) concentrations measured in the growth zone at the pollen tube apex. Interestingly, loss of polarity associated with overexpression of Pi CDPK1 was associated with elevated cytosolic Ca(2+) throughout the bulging tube tip, suggesting that Pi CDPK1 may participate in maintaining Ca(2+) homeostasis. These results are discussed in relation to previous models for Ca(2+) regulation of pollen tube growth.  (+info)

C-terminal residues of plant glutamate decarboxylase are required for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin. (55/161)

Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E. coli, and with a 9 amino acid C-terminal deletion mutant (GADDeltaC9). Size exclusion chromatography revealed that the full-length GAD formed complexes of about 580 kDa and 300 kDa in the absence of Ca2+/CaM, whereas in the presence of Ca2+/CaM all complexes shifted to approximately 680 kDa. With deletion of 9 amino acids from the C-terminus (KKKKTNRVC(500)), the ability to bind CaM in the presence of Ca2+, and to purify it by CaM-affinity chromatography was retained, but the formation of GAD complexes larger than 340 kDa and enzyme activation by Ca2+/CaM were completely abolished. Hence, responsiveness to Ca2+/CaM is associated with the formation of protein complexes of 680 kDa, and requires some or all of the nine C-terminal amino acid residues. We suggest that evolution of plant GAD from a bacterial ancestral enzyme involved the formation of higher molecular weight complexes required for activation by Ca2+/CaM.  (+info)

PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. (56/161)

The Petunia hybrida genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color, increased pH of petal extracts, and, in certain genetic backgrounds, the disappearance of anthocyanins and fading of the flower color. PH4 encodes a MYB domain protein that is expressed in the petal epidermis and that can interact, like AN2, with AN1 and the related BHLH protein JAF13 in yeast two-hybrid assays. Mutation of PH4 has little or no effect on the expression of structural anthocyanin genes but strongly downregulates the expression of CAC16.5, encoding a protease-like protein of unknown biological function. Constitutive expression of PH4 and AN1 in transgenic plants is sufficient to activate CAC16.5 ectopically. Together with the previous finding that AN1 domains required for anthocyanin synthesis and vacuolar acidification can be partially separated, this suggests that AN1 activates different pathways through interactions with distinct MYB proteins.  (+info)