Identification of the two histidine residues responsible for the inhibition by malonyl-CoA in peroxisomal carnitine octanoyltransferase from rat liver. (41/1142)

Carnitine octanoyltransferase (COT), an enzyme that facilitates the transport of medium chain fatty acids through peroxisomal membranes, is inhibited by malonyl-CoA. cDNAs encoding full-length wild-type COT and one double mutant variant from rat peroxisomal COT were expressed in Saccharomyces cerevisiae. Both expressed forms were expressed similarly in quantitative terms and exhibited full enzyme activity. The wild-type-expressed COT was inhibited by malonyl-CoA like the liver enzyme. The activity of the enzyme encoded by the double mutant H131A/H340A was completely insensitive to malonyl-CoA in the range assayed (2-200 microM). These results indicate that the two histidine residues, H131 and H340, are the sites responsible for inhibition by malonyl-CoA. Another mutant variant, H327A, abolishes the enzyme activity, from which it is concluded that it plays an important role in catalysis.  (+info)

Peroxisomal membrane protein Pmp47 is essential in the metabolism of middle-chain fatty acid in yeast peroxisomes and Is associated with peroxisome proliferation. (42/1142)

Pmp47 of the methylotrophic yeast Candida boidinii belongs to a mitochondrial family of solute transporters and is localized in peroxisomal membranes. Its human homolog, Pmp34, is also known. In this study, we characterized the role of Pmp47 in fatty acid metabolism and peroxisome proliferation using the PMP47-deleted strain of C. boidinii (strain pmp47Delta). The wild-type strain grew well on a middle-chain fatty acid, laureate, as the single carbon source, and mild peroxisome proliferation was observed during its growth. The pmp47Delta strain could not grow on laureate but could grow on long-chain fatty acids including palmitate, myristate, and oleate. The levels of laureate oxidation activity in intact cells and in semi-permeabilized cells of strain pmp47Delta were lower than the respective level in the wild-type strain, although the level of laureate oxidation activity in the cell lysate and the level of lauroyl-CoA oxidation in semi-permeabilized cells of strain pmp47Delta were indistinguishable from the respective level in the wild-type strain. When lauroyl-CoA was provided in the cytosol of strain pmp47Delta through expression of Saccharomyces cerevisiae Faa2p (lauroyl-CoA synthetase) in which its peroxisome targeting signal was deleted, the growth of strain pmp47Delta on laureate was recovered to the level of growth of the wild-type strain. Laureate is converted to its CoA form in peroxisomes by the action of lauroyl-CoA synthetase. These results suggested that Pmp47 is involved in the transport of a small molecule (possibly ATP) required in the conversion of laureate to its CoA form in peroxisomes and that the absence of Pmp47 causes impairment of laureate metabolism, which results in the inability of pmp47Delta cells to grow on laureate. In addition, Pmp47 may be involved in peroxisome proliferation, because the pmp47Delta strain contained a reduced number of peroxisomes, as judged from the fluorescence analysis of cells expressing green fluorescent protein tagged with the peroxisome targeting signal 1 (GFP-AKL).  (+info)

Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. (43/1142)

We report the characterization of ScPex8p, which is essential for peroxisomal biogenesis in Saccharomyces cerevisiae. Cells lacking Pex8p are characterized by the presence of peroxisomal membrane ghosts and mislocalization of peroxisomal matrix proteins of the PTS1 and PTS2 variety to the cytosol. Pex8p is tightly associated with the lumenal face of the peroxisomal membrane. Consistent with its intraperoxisomal localization, Pex8p contains a peroxisomal targeting signal 1, and it interacts with the PTS1 receptor Pex5p. However, the Pex5p/Pex8p association is also observed upon deletion of the PTS1 of Pex8p, suggesting that Pex8p contains a second binding site for Pex5p. The pex8Delta mutant phenotype and the observed PTS1-independent interaction with the PTS1 receptor suggest that Pex8p is involved in protein import into the peroxisomal matrix. In pex8Delta cells, the PTS1 and PTS2 receptor still associate with membrane bound components of the protein import machinery, supporting the assumption that the Pex8p function in protein translocation follows the docking event.  (+info)

Tetratricopeptide repeat domain of Yarrowia lipolytica Pex5p is essential for recognition of the type 1 peroxisomal targeting signal but does not confer full biological activity on Pex5p. (44/1142)

Peroxins are proteins required for peroxisome assembly and are encoded by the PEX genes. The Yarrowia lipolytica pex5-1 mutant fails to import a subset of peroxisomal matrix proteins, including those with a type 1 peroxisomal targeting signal (PTS1). Pex5p family members interact with a PTS1 through their characteristic tetratricopeptide repeat (TPR) domain. We used binding assays in vitro to investigate the nature of the association of Y. lipolytica Pex5p (YlPex5p) with the PTS1 signal. A purified recombinant YlPex5p fusion protein interacted specifically, directly and autonomously with a protein terminating in a PTS1. Wild-type YlPex5p translated in vitro recognized functional PTS1s specifically. This activity is abrogated by the substitution of an aspartic residue for a conserved glycine residue in the TPR domain (G455D) of YlPex5p encoded by the pex5-1 allele. Deletion analysis demonstrated that an intact TPR domain of YlPex5p is necessary but not sufficient for both interaction with a PTS1 and functional complementation of a strain lacking YlPex5p.  (+info)

Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. (45/1142)

Pex5p, a receptor for peroxisomal matrix proteins with a type 1 peroxisome targeting signal (PTS1), has been proposed to cycle from the cytoplasm to the peroxisomal membrane where it docks with Pex14p and Pex13p, the latter an SH3 domain-containing protein. Using in vitro binding assays we have demonstrated that binding of Pex5p to Pex14p is enhanced when Pex5p is loaded with a PTS1-containing peptide. In contrast, Pex5p binding to Pex13p, which involves only the SH3 domain, occurs at 20-40-fold lower levels and is reduced when Pex5p is preloaded with a PTS1 peptide. Pex14p was also shown to bind weakly to the Pex13p SH3 domain. Site-directed mutagenesis of the Pex13p SH3 domain attenuated binding to Pex5p and Pex14p, consistent with both of these proteins being binding partners for this domain. The SH3 binding site in Pex5p was determined to lie within a 114-residue peptide (Trp(100)-Glu(213)) in the amino-terminal region of the protein. The interaction between this peptide and the SH3 domain was competitively inhibited by Pex14p. We interpret these data as suggesting that docking of the Pex5p-PTS1 protein complex at the peroxisome membrane occurs at Pex14p and that the Pex13p SH3 domain functions as an associated component possibly involved in sequestering Pex5p after relinquishment of the PTS1 protein cargo to components of the translocation machinery.  (+info)

The peroxisome proliferator response element of the gene encoding the peroxisomal beta-oxidation enzyme enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase is a target for constitutive androstane receptor beta/9-cis-retinoic acid receptor-mediated transactivation. (46/1142)

The genes encoding the first two enzymes of the peroxisomal beta-oxidation pathway, acyl-CoA oxidase (AOx) and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (HD), contain upstream cis-acting regulatory regions termed peroxisome proliferator response elements (PPRE). Transcription of these genes is mediated through the binding of peroxisome proliferator-activated receptor alpha (PPARalpha), which binds to a PPRE as a heterodimer with the 9-cis-retinoic acid receptor (RXRalpha). Here we demonstrate that the HD-PPRE is also a target for the constitutive androstane receptor beta (CARbeta). In vitro binding analysis showed that CARbeta bound the HD-PPRE, but not the AOx-PPRE, as a heterodimer with RXRalpha. Binding of CARbeta/RXRalpha to the HD-PPRE occurred via determinants that overlap partially with those required for PPARalpha/RXRalpha binding. In vivo, CARbeta/RXRalpha activated transcription from an HD-PPRE luciferase reporter construct. Interestingly, CARbeta was shown to also modulate PPARalpha/RXRalpha-mediated transactivation in a response element-specific manner. In the presence of the peroxisome proliferator, Wy-14,643, CARbeta had no effect on PPARalpha/RXRalpha-mediated transactivation from the HD-PPRE but antagonized transactivation from the AOx-PPRE in both the presence and the absence of proliferator. Our results illustrate that transcription of the AOx and HD genes is differentially regulated by CARbeta and that the HD gene is a specific target for regulation by CARbeta. Overall, this study proposes a novel role for CARbeta in the regulation of peroxisomal beta-oxidation.  (+info)

Human peroxisomal multifunctional enzyme type 2. Site-directed mutagenesis studies show the importance of two protic residues for 2-enoyl-CoA hydratase 2 activity. (47/1142)

Beta-oxidation of acyl-CoAs in mammalian peroxisomes can occur via either multifunctional enzyme type 1 (MFE-1) or type 2 (MFE-2), both of which catalyze the hydration of trans-2-enoyl-CoA and the dehydrogenation of 3-hydroxyacyl-CoA, but with opposite chiral specificity. Amino acid sequence alignment of the 2-enoyl-CoA hydratase 2 domain in human MFE-2 with other MFE-2s reveals conserved protic residues: Tyr-347, Glu-366, Asp-370, His-406, Glu-408, Tyr-410, Asp-490, Tyr-505, Asp-510, His-515, Asp-517, and His-532. To investigate their potential roles in catalysis, each residue was replaced by alanine in site-directed mutagenesis, and the resulting constructs were tested for complementation in a yeast. After additional screening, the wild type and noncomplementing E366A and D510A variants were expressed and characterized. The purified proteins have similar secondary structural elements, with the same subunit composition. The E366A variant had a k(cat)/K(m) value 100 times lower than that of the wild type MFE-2 at pH 5, whereas the D510A variant was inactive. Asp-510 was imbedded in a novel hydratase 2 motif found in the hydratase 2 proteins. The data show that the hydratase 2 reaction catalyzed by MFE-2 requires two protic residues, Glu-366 and Asp-510, suggesting that their catalytic role may be equivalent to that of the two catalytic residues of hydratase 1.  (+info)

cDNA cloning and analysis of tissue-specific expression of mouse peroxisomal straight-chain acyl-CoA oxidase. (48/1142)

Straight-chain acyl-CoA oxidase is the first and rate limiting enzyme in the peroxisomal beta-oxidation pathway catalysing the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs, thereby producing H2O2. To study peroxisomal beta-oxidation we cloned and characterized the cDNA of mouse peroxisomal acyl-CoA oxidase. It consists of 3778 bp, including a 1983-bp ORF encoding a polypeptide of 661 amino-acid residues. Like the rat and human homologue the C-terminus contains an SKL motif, an import signal present in several peroxisomal matrix proteins. Sequence analysis revealed high amino-acid homology with rat (96%) and human (87%) acyl-CoA oxidase in addition to minor homology ( approximately 40%) with other related proteins, such as rabbit trihydroxy-cholestanoyl-CoA oxidase, human branched chain acyl-CoA oxidase and rat trihydroxycoprostanoyl-CoA oxidase. Acyl-CoA oxidase mRNA and protein expression were most abundant in liver followed by kidney, brain and adipose tissue. During mouse brain development acyl-CoA oxidase mRNA expression was highest during the suckling period indicating that peroxisomal beta-oxidation is most critical during this developmental stage. Comparing tissue mRNA levels of peroxisome proliferator-activated receptor alpha and acyl-CoA oxidase, we noticed a constant relationship in all tissues investigated, except heart and adipose tissue in which much more, and respectively, much less, peroxisome proliferator-activated receptor alpha mRNA in proportion to acyl-CoA oxidase mRNA was found. Our data show that acyl-CoA oxidase is an evolutionary highly conserved enzyme with a distinct pattern of expression and indicate an important role in lipid metabolism.  (+info)