Heterogeneous localizations of Trk B among individual periodontal Ruffini endings in the rat incisor. (9/391)

The present immunocytochemical study examined the localization of Trk B, a high affinity neurotrophin receptor, in the neural elements of the periodontal ligament of the rat incisor. In light microscopy, the immunoreactivity was demonstrated in dendritic profiles in the alveolar half of the periodontal ligament. Their location and morphological features indicated that they were periodontal Ruffini endings. Occasional rounded cells associated with periodontal Ruffini endings, which had immunonegative kidney-shaped nuclei, were immunoreactive; these were judged to be terminal Schwann cells. Immunoelectron microscopy revealed the heterogeneous localization of Trk B among individual Ruffini endings. Some terminal Schwann cells contained immunoreactive products for Trk B in the cytoplasm, while others did not. Similarly, a part of the Schwann sheaths covering the axon terminals showed Trk B immunoreactivity. Most axon terminals associated with periodontal Ruffini endings were immunopositive for Trk B, though a few of them were immunonegative. The ordinary Schwann cells did not contain Trk B immunoreactive products. These findings imply that Trk B is required for the maintenance of periodontal Ruffini endings. The different expression pattern of Trk B suggests that neuronal and glial elements comprising individual periodontal Ruffini endings are subject to heterogeneous conditions with regard to the requirement of Trk B.  (+info)

Evolution of periodontal regeneration: from the roots' point of view. (10/391)

Tissues lost as a consequence of periodontal diseases, i.e. bone, cementum and a functional periodontal ligament (PDL), can be restored to some degree. Nevertheless, results are often disappointing. There is a need to develop new paradigms for regenerating periodontal tissues that are based on an understanding of the cellular and molecular mechanisms regulating the development and regeneration of periodontal tissues. As one approach we have developed strategies for maintaining cementoblasts in culture by first determining the gene profile for these cells in situ. Next, cells were immortalized in vitro using SV 40 large T antigen (SV40 Tag) or by using mice containing transgenes enabling cellular immortality in vitro. Cementoblasts in vitro retained expression of genes associated with mineralized tissues, bone sialoprotein and osteocalcin, that were not linked with periodontal fibroblasts either in situ or in vitro. Further, cementoblasts promoted mineralization in vitro as measured by von Kossa and ex vivo using a severely compromised immunodeficient (SCID) mouse model. These cells responded to growth factors by eliciting changes in gene profile and mitogenesis and to osteotropic hormones by evoking changes in gene profile and ability to induce mineral nodule formation in vitro. The ultimate goal of these studies is to provide the knowledge base required for designing improved modalities for use in periodontal regenerative therapies.  (+info)

The Ruffini ending as the primary mechanoreceptor in the periodontal ligament: its morphology, cytochemical features, regeneration, and development. (11/391)

The periodontal ligament receives a rich sensory nerve supply and contains many nociceptors and mechanoreceptors. Although its various kinds of mechanoreceptors have been reported in the past, only recently have studies revealed that the Ruffini endings--categorized as low-threshold, slowly adapting, type II mechanoreceptors--are the primary mechanoreceptors in the periodontal ligament. The periodontal Ruffini endings display dendritic ramifications with expanded terminal buttons and, furthermore, are ultrastructurally characterized by expanded axon terminals filled with many mitochondria and by an association with terminal or lamellar Schwann cells. The axon terminals of the periodontal Ruffini endings have finger-like projections called axonal spines or microspikes, which extend into the surrounding tissue to detect the deformation of collagen fibers. The functional basis of the periodontal Ruffini endings has been analyzed by histochemical techniques. Histochemically, the axon terminals are reactive for cytochrome oxidase activity, and the terminal Schwann cells have both non-specific cholinesterase and acid phosphatase activity. On the other hand, many investigations have suggested that the Ruffini endings have a high potential for neuroplasticity. For example, immunoreactivity for p75-NGFR (low-affinity nerve growth factor receptor) and GAP-43 (growth-associated protein-43), both of which play important roles in nerve regeneration/development processes, have been reported in the periodontal Ruffini endings, even in adult animals (though these proteins are usually repressed or down-regulated in mature neurons). Furthermore, in experimental studies on nerve injury to the inferior alveolar nerve, the degeneration of Ruffini endings takes place immediately after nerve injury, with regeneration beginning from 3 to 5 days later, and the distribution and terminal morphology returning to almost normal at around 14 days. During regeneration, some regenerating Ruffini endings expressed neuropeptide Y, which is rarely observed in normal animals. On the other hand, the periodontal Ruffini endings show stage-specific configurations which are closely related to tooth eruption and the addition of occlusal forces to the tooth during postnatal development, suggesting that mechanical stimuli due to tooth eruption and occlusion are a prerequisite for the differentiation and maturation of the periodontal Ruffini endings. Further investigations are needed to clarify the involvement of growth factors in the molecular mechanisms of the development and regeneration processes of the Ruffini endings.  (+info)

Effects of different types of injury to the inferior alveolar nerve on the behavior of Schwann cells during the regeneration of periodontal nerve fibers of rat incisor. (12/391)

The present study reports on different regeneration patterns of axons and Schwann cells in the periodontal ligament of the rat incisor using immunohistochemistry of protein gene product 9.5 (PGP 9.5) and S-100 protein. Three kinds of injury (transection, crush and segmental resection) were applied to the inferior alveolar nerve. In normal animals, PGP 9.5- and S-100-immunoreactivities were detected in the axons and Schwann cell elements of periodontal Ruffini endings, respectively. They were restricted to the alveolus-related part, occurring only rarely in the tooth-related part and in the shear zone (the border between the alveolus-related and tooth-related parts). Both transection and segmental resection caused the complete disappearance of PGP 9.5-immunoreactive nerve fibers in the periodontal ligament, while a small number of them could be found following the crush injury. Regenerating PGP 9.5-reactive nerve fibers appeared at 5 days and 21 days following the transection and segmental resection, respectively. The regeneration of periodontal nerve fibers completed in a period of 21-28 days and 14-21 days following the transection and crush, respectively, but was not completed even at 56 days following the segmental resection. The behavior of Schwann cells during regeneration was similar after the different nerve injuries; spindle-shaped S-100-immunoreactive cells, presumably Schwann cells, appeared in the shear zone and the tooth-related part. These cells disappeared 5-7 days prior to the completion of the regeneration of axonal elements of the periodontal ligament following the transection and crush. Following the segmental resection, in contrast, spindle-shaped S-100-positive cells disappeared from the tooth-related part at 42 days, although the axonal regeneration of periodontal Ruffini endings proceeded even until 56 days. We thus conclude that the duration of the migration of Schwann cells depends on the state of the regeneration of axons.  (+info)

In vitro phagocytosis of exogenous collagen by fibroblasts from the periodontal ligament: an electron microscopic study. (13/391)

There have been numerous electron microscopic reports of apparent phagocytosis of collagen by fibroblasts and other cells in vivo. We have developed an in vitro system which, to the best of our knowledge, will permit for the first time the study of regulatory mechanisms governing phagocytosis and digestion of collagen fibres. Cells were cultured from explants of monkey periodontal ligament, subcultured, and grown to confluence in alpha-MEM plus 15% fetal calf serum plus antibiotics. The confluent cells were then cultured together with minced rat tail tendon collagen in alpha-MEM lacking proline, lysine, glycine and fetal calf serum for up to 7 days, after which they were processed for electron microscopy. Intracellular collagen profiles could be seen in cultured cells that were associated with exogenous collagen fibrils as early as 24 hours after addition of the collagen. Through electron microscopic examination of serial sections of the culture, we have demonstrated: (1) that fibroblasts can phagocytose collagen; (2) that the observed intracellular collagen is not the result of aggregation of endogenous synthesized collagen; (3) that it is not possible to base a decision as to whether a collagen fibril has been phagocytosed in whole or in part by the type of vesicle with which it is associated; (4) that cleavage of collagen into small pieces may not be a necessary prelude to its phagocytosis.  (+info)

Clinical management of avulsed permanent incisors using Emdogain: initial report of an investigation. (14/391)

The enamel matrix derivative Emdogain was recently approved for clinical use in a number of countries, including Canada. It has been shown to stimulate regeneration of periodontal ligament following periodontal surgery in adults. This paper reviews pertinent clinical and laboratory studies of Emdogain and describes the protocol and methods used for a longitudinal outcome study of replantation of avulsed permanent incisors in children and adolescents. Application of these methods is described in an illustrative case report of Emdogain use. This paper is meant to inform clinicians and guide those who are instituting similar investigations.  (+info)

Morphological and cytochemical characteristics of periodontal Ruffini ending under normal and regeneration processes. (15/391)

Current knowledge on the Ruffini endings, primary mechanoreceptors in the periodontal ligament is reviewed with special reference to their cytochemical features and regeneration process. Morphologically, they are characterized by extensive ramifications of expanded axonal terminals and an association with specialized Schwann cells, called lamellar or terminal Schwann cells, which are categorized, based on their histochemical properties, as non-myelin-forming Schwann cells. Following nerve injury, the periodontal Ruffini endings of the rat incisor ligament can regenerate more rapidly than Ruffini endings in other tissues. During regeneration, terminal Schwann cells associated with the periodontal Ruffini endings migrate into regions where they are never found under normal conditions. Also during regeneration, alterations in the expression level of various bioactive substances occur in both axonal and Schwann cell elements in the periodontal Ruffini endings. Neuropeptide Y, which is not detected in intact periodontal Ruffini endings, is transiently expressed in their regenerating axons. Growth-associated protein-43 (GAP-43) is expressed transiently in both axonal and Schwann cell elements during regeneration, while this protein is localized in the Schwann sheath of periodontal Ruffini endings under normal conditions. The expression of calbindin D28k and calretinin, both belonging to the buffering type of calcium-binding proteins, was delayed in periodontal Ruffini endings, compared to their morphological regeneration. As the importance of axon-Schwann cell interactions has been proposed, further investigations are needed to elucidate their molecular mechanism particularly the contribution of growth factors during the regeneration as well as development of the periodontal Ruffini endings.  (+info)

Time-related changes in periodontal mechanoreceptors in rat molars after the loss of occlusal stimuli. (16/391)

The effect of a loss of occlusal stimuli upon the distribution and structure of the periodontal mechanoreceptors of the rat mandibular molar was examined after extracting opposing molars. The hypofunctional periodontal ligament narrowed significantly two weeks after tooth extraction, associated with an altered morphology of the Ruffini endings that showed typical dendritic profiles in normal controls. At four weeks and later periods after extraction, the Ruffini endings-including those without light microscopic changes demonstrated unusual ultrastructural features such as the eccentric localization of mitochondria along the axonal membrane and loss of other cell organelles, unusual elongation of axonal microprojections, or a deep invagination of the Schwann sheath into the axoplasm. Immunoreactivity for the growth-associated protein-43 (GAP-43) in the Ruffini endings was restricted to the Schwann element in both the normal and hypofunctional periodontal ligament, but the reaction was weaker and even negligible in some cases in the latter ligament. The present results suggest that occlusal stimuli are essential for maintaining the structural integrity of the periodontal ligament, including that of periodontal mechanoreceptors. A decreased immunoreactivity for GAP-43 in the Schwann sheaths supports the notion of a possible functional alteration in the Ruffini endings that showed no structural abnormality.  (+info)