Loading...
(1/3011) Prolactin replacement fails to inhibit reactivation of gonadotropin secretion in rams treated with melatonin under long days.

This study tested the hypothesis that prolactin (PRL) inhibits gonadotropin secretion in rams maintained under long days and that treatment with melatonin (s.c. continuous-release implant; MEL-IMP) reactivates the reproductive axis by suppressing PRL secretion. Adult Soay rams were maintained under long days (16L:8D) and received 1) no further treatment (control, C); 2) MEL-IMP for 16 wk and injections of saline/vehicle for the first 8 wk (M); 3) MEL-IMP for 16 wk and exogenous PRL (s.c. 5 mg ovine PRL 3x daily) for the first 8 wk (M+P). The treatment with melatonin induced a rapid increase in the blood concentrations of FSH and testosterone, rapid growth of the testes, an increase in the frequency of LH pulses, and a decrease in the LH response to N-methyl-D,L-aspartic acid. The concomitant treatment with exogenous PRL had no effect on these reproductive responses but caused a significant delay in the timing of the sexual skin color and growth of the winter pelage. These results do not support the hypothesis and suggest that PRL at physiological long-day concentrations, while being totally ineffective as an inhibitor of gonadotropin secretion, acts in the peripheral tissues and skin to maintain summer characteristics.  (+info)

(2/3011) Mechanical stimulation of starfish sperm flagella.

1. The responses of starfish sperm flagella to mechanical stimulation with a microneedle were analysed. Flagellar movement was recorded by high-speed microcinematography and by stroboscopic observation. 2. The amplitude of the bending wave of a flagellum was restricted over its entire length when the microneedle was brought near to the flagellum at its proximal region. Beyond the restricted part, the amplitude of the wave, and the bend angle, became smaller than those of a normally beating flagellum, while the curvature was practically unchanged. 3. When the tip of the microneedle was in contact with the flagellum, propagation of the bending wave beyond the microneedle was inhibited. The part of the flagellum between the base and the microneedle continued beating in some cases and stopped beating in other cases. The flagellum beyond the arrested part stopped beating and remained straight. When the microneedle was removed, the bending wave which existed in the part of the flagellum proximal to the microneedle, or the wave which was passively formed de novo at the time of the removal of the microneedle, propagated over the arrested part towards the tip. 4. A flagellum amputated by a microneedle in a medium containing ATP continued beating with a small amplitude, small curvature, small bend angle and low frequency. When the amputated flagellum was passively bent by a microneedle at the region near the point of amputation, this bend propagated towards the tip with a constant bend angle. 5. The beating frequency of the flagellum could be modulated by the application of a rhythmic external force generated by vibrating a microneedle near the flagellum. The beating was completely synchronized with vibration of the microneedle in the frequency range from 23 Hz to 43 Hz.  (+info)

(3/3011) Actions of a pair of identified cerebral-buccal interneurons (CBI-8/9) in Aplysia that contain the peptide myomodulin.

A combination of biocytin back-fills of the cerebral-buccal connectives and immunocytochemistry of the cerebral ganglion demonstrated that of the 13 bilateral pairs of cerebral-buccal interneurons in the cerebral ganglion, a subpopulation of 3 are immunopositive for the peptide myomodulin. The present paper describes the properties of two of these cells, which we have termed CBI-8 and CBI-9. CBI-8 and CBI-9 were found to be dye coupled and electrically coupled. The cells have virtually identical properties, and consequently we consider them to be "twin" pairs and refer to them as CBI-8/9. CBI-8/9 were identified by electrophysiological criteria and then labeled with dye. Labeled cells were found to be immunopositive for myomodulin, and, using high pressure liquid chromatography, the cells were shown to contain authentic myomodulin. CBI-8/9 were found to receive synaptic input after mechanical stimulation of the tentacles. They also received excitatory input from C-PR, a neuron involved in neck lengthening, and received a slow inhibitory input from CC5, a cell involved in neck shortening, suggesting that CBI-8/9 may be active during forward movements of the head or buccal mass. Firing of CBI-8 or CBI-9 resulted in the activation of a relatively small number of buccal neurons as evidenced by extracellular recordings from buccal nerves. Firing also produced local movements of the buccal mass, in particular a strong contraction of the I7 muscle, which mediates radula opening. CBI-8/9 were found to produce a slow depolarization and rhythmic activity of B48, the motor neuron for the I7 muscle. The data provide continuing evidence that the small population of cerebral buccal interneurons is composed of neurons that are highly diverse in their functional roles. CBI-8/9 may function as a type of premotor neuron, or perhaps as a peptidergic modulatory neuron, the functions of which are dependent on the coactivity of other neurons.  (+info)

(4/3011) Long-term effects of prior heat shock on neuronal potassium currents recorded in a novel insect ganglion slice preparation.

Brief exposure to high temperatures (heat shock) induces long-lasting adaptive changes in the molecular biology of protein interactions and behavior of poikilotherms. However, little is known about heat shock effects on neuronal properties. To investigate how heat shock affects neuronal properties we developed an insect ganglion slice from locusts. The functional integrity of neuronal circuits in slices was demonstrated by recordings from rhythmically active respiratory neurons and by the ability to induce rhythmic population activity with octopamine. Under these "functional" in vitro conditions we recorded outward potassium currents from neurons of the ventral midline of the A1 metathoracic neuromere. In control neurons, voltage steps to 40 mV from a holding potential of -60 mV evoked in control neurons potassium currents with a peak current of 10.0 +/- 2.5 nA and a large steady state current of 8.5 +/- 2.6 nA, which was still activated from a holding potential of -40 mV. After heat shock most of the outward current inactivated rapidly (peak amplitude: 8.4 +/- 2.4 nA; steady state: 3.6 +/- 2.0 nA). This current was inactivated at a holding potential of -40 mV. The response to temperature changes was also significantly different. After changing the temperature from 38 to 42 degrees C the amplitude of the peak and steady-state current was significantly lower in neurons obtained from heat-shocked animals than those obtained from controls. Our study indicates that not only heat shock can alter neuronal properties, but also that it is possible to investigate ion currents in insect ganglion slices.  (+info)

(5/3011) Gating of afferent input by a central pattern generator.

Intracellular recordings from the sole proprioceptor (the oval organ) in the crab ventilatory system show that the nonspiking afferent fibers from this organ receive a cyclic hyperpolarizing inhibition in phase with the ventilatory motor pattern. Although depolarizing and hyperpolarizing current pulses injected into a single afferent will reset the ventilatory motor pattern, the inhibitory input is of sufficient magnitude to block afferent input to the ventilatory central pattern generator (CPG) for approximately 50% of the cycle period. It is proposed that this inhibitory input serves to gate sensory input to the ventilatory CPG to provide an unambiguous input to the ventilatory CPG.  (+info)

(6/3011) Breathing patterns during slow and fast ramp exercise in man.

Breathing frequency (fb), tidal volume (VT), and respiratory timing during slow (SR, 8 W min-1) and fast (FR, 65 W min-1) ramp exercise to exhaustion on a cycle ergometer was examined in seven healthy male subjects. Expiratory ventilation (VE), pulmonary gas exchange (VO2 and VCO2) and end-tidal gas tensions (PET,O2 and PET,CO2) were determined using breath-by-breath techniques. Arterialized venous blood was sampled from a dorsal hand vein at 2 min intervals during SR and 30 s intervals during FR and analysed for arterial plasma PCO2 (PaCO2). PET,CO2 increased with increasing work rates (WRs) below the ventilatory threshold (VT); at WRs > or = 90% VO2,max, PET,CO2 was reduced (P < 0.05) below 0 W values in SR but not in FR.fb and VT were similar for SR and FR at all submaximal WRs, resulting in a similar VE. At exhaustion VE was similar but fb was higher (P < 0.05) and VT was lower (P < 0.05) in SR (fb, 51 +/- 10 breaths min-1; VT, 2590 +/- 590 ml) than in FR (fb, 42 +/- 8 breaths min-1; VT, 3050 +/- 470 ml). The time of expiration (TE) decreased with increasing WR, but there was no difference between SR and FR. The time of inspiration (TI) decreased at exercise intensities > or = VT; at exhaustion, TI was shorter (P < 0.05) during SR (0.512 +/- 0.097 s) than during FR (0.753 +/- 0.100 s). The TI to total breath duration (TI/TTot) and the inspiratory flow (VT/TI) were similar during SR and FR at all submaximal exercise intensities; at VO2,max, TI/TTot was lower (P < 0.05) and VT/TI was higher (P < 0.05) during SR (TI/TTot, 0.473 +/- 0.030; VT/TI, 5.092 +/- 0.377 l s-1) than during FR (TI/TTot, 0.567 +/- 0.050; VT/TI, 4.117 +/- 0.635 l s-1). These results suggest that during progressive exercise, breathing pattern and respiratory timing may be determined, at least at submaximal work rates, independently of alveolar and arterial PCO2.  (+info)

(7/3011) Oxytocin-induced Ca2+ responses in human myometrial cells.

Complex spatiotemporal changes in intracellular Ca2+ were monitored in an immortalized human myometrial cell line (PHM1-41) and first-passage human myometrial cells after oxytocin stimulation (1. 0-1000 nM). Laser cytometry revealed intracellular Ca2+ oscillations in both culture systems starting at 1.0 nM, which were followed by repetitive Ca2+ transients by 10-15 min that lasted for at least 90 min. The amplitude of the initial Ca2+ spike was dose dependent, while the frequency of Ca2+ oscillations identified by Fast Fourier Transform (FFT) tended to increase with dose. Removal of oxytocin resulted in termination of oscillations. Analysis of the sources of the Ca2+ involved in oscillations indicated that the major contribution to oscillation frequencies of +info)

(8/3011) Patterns of spontaneous purkinje cell complex spike activity in the awake rat.

The olivocerebellar system is known to generate periodic synchronous discharges that result in synchronous (to within 1 msec) climbing fiber activation of Purkinje cells (complex spikes) organized in parasagittally oriented strips. These results have been obtained primarily in anesthetized animals, and so the question remains whether the olivocerebellar system generates such patterns in the awake animal. To this end, multiple electrode recordings of crus 2a complex spike activity were obtained in awake rats conditioned to execute tongue movements in response to a tone. After removal of all movement- and tone-related activity, the remaining data were examined to characterize spontaneous complex spike activity in the alert animal. Spontaneous complex spikes occurred at an average firing rate of 1 Hz and a clear approximately 10 Hz rhythmicity. Analysis of the autocorrelograms using a rhythm index indicated that the large majority of Purkinje cells displayed rhythmicity, similar to that in the anesthetized preparation. In addition, the patterns of synchronous complex spike activity were also similar to those observed in the anesthetized preparation (i.e., simultaneous activity was found predominantly among Purkinje cells located within the same parasagittally oriented strip of cortex). The results provide unequivocal evidence that the olivocerebellar system is capable of generating periodic patterns of synchronous activity in the awake animal. These findings support the extrapolation of previous results obtained in the anesthetized preparation to the waking state and are consistent with the timing hypothesis concerning the role of the olivocerebellar system in motor coordination.  (+info)