Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. (73/643)

Tumor-infiltrating blood vessels deviate morphologically and biochemically from normal vessels, raising the prospect of selective pharmacological targeting. Current antiangiogenic approaches focus mainly on endothelial cells, but recent data imply that targeting pericytes may provide additional benefits. Further development of these concepts will require deeper insight into mechanisms of pericyte recruitment and function in tumors. Here, we applied genetic tools to decipher the function of PDGF-B and PDGF-Rbeta in pericyte recruitment in a mouse fibrosarcoma model. In tumors transplanted into PDGF-B retention motif-deficient (pdgf-b(ret/ret)) mice, pericytes were fewer and were partially detached from the vessel wall, coinciding with increased tumor vessel diameter and hemorrhaging. Transgenic PDGF-B expression in tumor cells was able to increase the pericyte density in both WT and pdgf-b(ret/ret) mice but failed to correct the pericyte detachment in pdgf-b(ret/ret) mice. Coinjection of exogenous pericytes and tumor cells showed that pericytes require PDGF-Rbeta for recruitment to tumor vessels, whereas endothelial PDGF-B retention is indispensable for proper integration of pericytes in the vessel wall. Our data support the notion that pericytes serve an important function in tumor vessels and highlight PDGF-B and PDGF-Rbeta as promising molecular targets for therapeutic intervention.  (+info)

FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. (74/643)

PURPOSE: Although the FGF and TGF-beta families are known to play an important role in regulating vascular endothelial and smooth muscle cell behavior, the influence of these matrix-binding growth factors on microvascular pericyte morphogenesis is not well understood. The current study was undertaken to examine the molecular mechanisms that mediate the effects of the endothelium-produced growth regulators FGF-2 and TGF-beta1 on retinal pericyte proliferation and contractile phenotype. METHODS: Using purified retinal pericytes, a series of assays were implemented, including RT-PCR, DNA binding, immunoprecipitation, electrophoretic mobility shift, and indirect immunofluorescence, in an attempt to elucidate the FGF/TGF-beta1 signaling cascades that mediate retinal microvascular cell growth and contractile phenotype. RESULTS: Treatment of retinal pericytes with FGF-2 and heparin stimulated nearly a log order increase in proliferation, whereas removal of FGF-2 or addition of TGF-beta1 caused withdrawal from the growth cycle, inducing a smooth-muscle-like contractile phenotype, as indicated by upregulation of alpha-smooth muscle actin (alpha-SMA). This switch from a growth-potentiated to a growth-arrested state followed induction of the transcriptional regulator myf-5, as well as the nuclear translocation of myf-5 and Smad2. CONCLUSIONS: Several critical features of the endothelial cell-extracellular matrix-pericyte molecular signaling axis were elucidated in the study that are likely to be responsible for regulating retinal microvascular morphogenesis during normal development, as well as the pathologic angiogenesis accompanying several ocular disorders, including diabetic retinopathy and age-related macular degeneration.  (+info)

Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. (75/643)

The phenotypic differentiation of systemic macrophages that have infiltrated the central nervous system, pericytes, perivascular macrophages, and the "real" resident microglial cells is a major immunocytochemical and immunohistochemical concern for all users of cultures of brain cells and brain sections. It is not only important in assessing the purity of cell cultures; it is also of fundamental importance in the assessment of the pathogenetic significance of perivascular inflammatory phenomena within the brain. The lack of a single membranous and/or biochemical marker allowing conclusive identification of these cells is still a major problem in neurobiology. This review briefly discusses the functions of these cells and catalogs a large number of membranous and biochemical markers, which can assist in the identification of these cells.  (+info)

Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. (76/643)

Pericytes have been suggested to play a role in regulation of vessel stability; one mechanism for this stabilization may be via pericyte-derived vascular endothelial growth factor (VEGF). To test the hypothesis that differentiation of mesenchymal cells to pericytes/smooth muscle cells (SMC) is accompanied by VEGF expression, we used endothelial cell (EC) and mesenchymal cell cocultures to model cell-cell interactions that occur during vessel development. Coculture of EC and 10T1/2 cells, multipotent mesenchymal cells, led to induction of VEGF expression by 10T1/2 cells. Increased VEGF expression was dependent on contact between EC-10T1/2 and was mediated by transforming growth factorbeta (TGFbeta). A majority of VEGF produced in coculture was cell- and/or matrix-associated. Treatment of cells with high salt, protamine, heparin, or suramin released significant VEGF, suggesting that heparan sulfate proteoglycan might be sequestering some of the VEGF. Inhibition of VEGF in cocultures led to a 75% increase in EC apoptosis, indicating that EC survival in cocultures is dependent on 10T1/2-derived VEGF. VEGF gene expression in developing retinal vasculature was observed in pericytes contacting newly formed microvessels. Our observations indicate that differentiated pericytes produce VEGF that may act in a juxtacrine/paracrine manner as a survival and/or stabilizing factor for EC in microvessels.  (+info)

Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. (77/643)

The platelet-derived growth factor beta receptor (PDGFRbeta) is known to activate many molecules involved in signal transduction and has been a paradigm for receptor tyrosine kinase signaling for many years. We have sought to determine the role of individual signaling components downstream of this receptor in vivo by analyzing an allelic series of tyrosine-phenylalanine mutations that prevent binding of specific signal transduction components. Here we show that the incidence of vascular smooth muscle cells/pericytes (v/p), a PDGFRbeta-dependent cell type, can be correlated to the amount of receptor expressed and the number of activated signal transduction pathways. A decrease in either receptor expression levels or disruption of multiple downstream signaling pathways lead to a significant reduction in v/p. Conversely, loss of RasGAP binding leads to an increase in this same cell population, implicating a potential role for this effector in attenuating the PDGFRbeta signal. The combined in vivo and biochemical data suggest that the summation of pathways associated with the PDGFRbeta signal transduction determines the expansion of developing v/p cells.  (+info)

Diabetes-induced mitochondrial dysfunction in the retina. (78/643)

PURPOSE: Oxidative stress is increased in the retina in diabetes, and antioxidants inhibit activation of caspase-3 and the development of retinopathy. The purpose of this study was to investigate the effect of diabetes on the release of cytochrome c from mitochondria and translocation of Bax into mitochondria in the rat retina and in the isolated retinal capillary cells. METHODS: Mitochondria and cytosol fractions were prepared from retina of rats with streptozotocin-induced diabetes and from the isolated retinal endothelial cells and pericytes incubated in 5 or 20 mM glucose medium for up to 10 days in the presence of superoxide dismutase (SOD) or a synthetic mimetic of SOD (MnTBAP). The release of cytochrome c into the cytosol and translocation of the proapoptotic protein Bax into the mitochondria were determined by the Western blot technique and cell death by caspase-3 activity and ELISA assay. RESULTS: Diabetes of 8 months' duration in rats increased the release of cytochrome c into the cytosol and Bax into the mitochondria prepared from the retina, and this phenomenon was not observed at 2 months of diabetes. Incubation of isolated retinal capillary cells with 20 mM glucose increased cytochrome c content in the cytosol and Bax in the mitochondria, and these abnormalities were accompanied by increased cell apoptosis. Inclusion of SOD or its mimetic inhibited glucose-induced release of cytochrome c, translocation of Bax, and apoptosis. CONCLUSIONS: Retinal mitochondria become leaky when the duration of diabetes is such that capillary cell apoptosis can be observed; cytochrome c starts to accumulate in the cytosol and Bax into the mitochondria. Inhibition of superoxides inhibits glucose-induced release of cytochrome c and Bax and inhibits apoptosis in both endothelial cells and pericytes. Identifying the mechanism by which retinal capillary cells undergo apoptosis may reveal novel therapies to inhibit the development of retinopathy in diabetes.  (+info)

High glucose alters connexin 43 expression and gap junction intercellular communication activity in retinal pericytes. (79/643)

PURPOSE: To investigate the role of the gap junction protein, connexin-43 (Cx43) in the maintenance of retinal vascular homeostasis in diabetic retinopathy. METHODS: In human retinal pericytes (HRPs) and bovine retinal pericytes (BRPs) grown for 7 days in normal (5 mM) or high (30 mM)-glucose medium, the Cx43 protein level was determined by Western blot analysis. Parallel experiments were performed in HRPs to determine the Cx43 mRNA level by RT-PCR, the distribution and localization of Cx43 protein by immunostaining, and gap junction intercellular communication (GJIC) activity by a scrape-loading dye transfer technique. Distribution and localization of Cx43 protein was also determined in pericyte-endothelial cell cocultures. RESULTS: Western blot analysis of the Cx43 protein level in HRPs and BRPs indicated reduced Cx43 expression in the high-glucose condition (69.1% +/- 17% of control, P = 0.004; 62.3% +/- 19% of control, P = 0.001, respectively). The Cx43 mRNA level in HRPs grown in high-glucose medium also showed significant reduction (71.4% +/- 16.8% of control, P = 0.02). The relative number of Cx43 plaques indicative of Cx43 localization at specific sites of contact between adjacent cells showed significant reduction in the high-glucose condition (61% +/- 10% of control, P = 0.002); similarly, a significant reduction in the number of plaques was observed in cocultures grown in high-glucose medium compared with those in normal medium (59.4% +/- 29% of control, P = 0.001). Cells with reduced Cx43 expression showed significantly reduced transfer of lucifer yellow (61% +/- 13% of control, P = 0.001; r = 0.9). CONCLUSIONS: High-glucose-induced downregulation of Cx43 expression and inhibition of GJIC in retinal pericytes may play a role in the disruption of vascular homeostasis in diabetic retinopathy.  (+info)

Bone marrow-derived cells do not incorporate into the adult growing vasculature. (80/643)

Bone marrow-Derived cells have been proposed to form new vessels or at least incorporate into growing vessels in adult organisms under certain physiological and pathological conditions. We investigated whether bone marrow-Derived cells incorporate into vessels using mouse models of hindlimb ischemia (arteriogenesis and angiogenesis) and tumor growth. C57BL/6 wild-type mice were lethally irradiated and transplanted with bone marrow cells from littermates expressing enhanced green fluorescent protein (GFP). At least 6 weeks after bone marrow transplantation, the animals underwent unilateral femoral artery occlusions with or without pretreatment with vascular endothelial growth factor or were subcutaneously implanted with methylcholanthrene-induced fibrosarcoma (BFS-1) cells. Seven and 21 days after surgery, proximal hindlimb muscles with growing collateral arteries and ischemic gastrocnemius muscles as well as grown tumors and various organs were excised for histological analysis. We failed to colocalize GFP signals with endothelial or smooth muscle cell markers. Occasionally, the use of high-power laser scanning confocal microscopy uncovered false-positive results because of overlap of different fluorescent signals from adjacent cells. Nevertheless, we observed accumulations of GFP-positive cells around growing collateral arteries (3-fold increase versus nonoccluded side, P<0.001) and in ischemic distal hindlimbs. These cells were identified as fibroblasts, pericytes, and primarily leukocytes that stained positive for several growth factors and chemokines. Our findings suggest that in the adult organism, bone marrow-Derived cells do not promote vascular growth by incorporating into vessel walls but may function as supporting cells.  (+info)