Efficacy of two peroxygen-based disinfectants for inactivation of Cryptosporidium parvum oocysts. (17/77)

Two commercial peroxygen-based disinfectants containing hydrogen peroxide plus either peracetic acid (Ox-Virin) or silver nitrate (Ox-Agua) were tested for their ability to inactivate Cryptosporidium parvum oocysts. Oocysts were obtained from naturally infected goat kids and exposed to concentrations of 2, 5, and 10% Ox-Virin or 1, 3, and 5% Ox-Agua for 30, 60, and 120 min. In vitro excystation, vital dyes (4',6'-diamidino-2-phenylindole and propidium iodide), and infectivity in neonatal BALB/c mice were used to assess the viability and infectivity of control and disinfectant-treated oocysts. Both disinfectants had a deleterious effect on the survival of C. parvum oocysts, since disinfection significantly reduced and in some cases eliminated their viability and infectivity. When in vitro assays were compared with an infectivity assay as indicators of oocyst inactivation, the excystation assay showed 98.6% inactivation after treatment with 10% Ox-Virin for 60 min, while the vital-dye assay showed 95.2% inactivation and the infectivity assay revealed 100% inactivation. Treatment with 3% Ox-Agua for 30 min completely eliminated oocyst infectivity for mice, although we were able to observe only 74.7% inactivation as measured by excystation assays and 24.3% with vital dyes (which proved to be the least reliable method for predicting C. parvum oocyst viability). These findings indicate the potential efficacy of both disinfectants for C. parvum oocysts in agricultural settings where soil, housing, or tools might be contaminated and support the argument that in comparison to the animal infectivity assay, vital-dye and excystation methods overestimate the viability of oocysts following chemical disinfection.  (+info)

Treatment of ichthyophthiriasis after malachite green. I. Concrete tanks at salmonid farms. (18/77)

Since the use of malachite green was banned in many European countries, new alternative treatments have been tested to prevent white spot disease caused by Ichthyophthirius multifiliis. We tested formalin, potassium permanganate (KMnO4), chloramine-T, hydrogen peroxide (H2O2) and Per Aqua or Desirox alone or in combinations of 2 chemicals, one of which was always formalin, in 50 m2 concrete tanks at 2 farms producing salmon Salmo salar smolt in 2001 and 2002. Both Per Aqua and Desirox are combinations of peracetic acid, acetic acid and hydrogen peroxide. The alternative chemicals or their combinations can be used successfully to lower the parasite burden to such a level that no high mortality occurs during the first 4 wk after the start of an infection. This period of time allows the fish to develop immunity against these ciliates, and treatments can be reduced and stopped in due course. I. multifiliis decreased in number 3 to 4 wk after the beginning of the infection in all the treatments. Large differences in parasite burden and mortality occurred among the replicates in all except the Desirox-formalin tanks, which means that they are not as reliable as the malachite green-formalin used previously. It was also evident that the chemicals and their concentrations must be planned carefully to suit the conditions on each farm.  (+info)

Peracetic acid stress-induced genetic rearrangements in Escherichia coli H10407 detected by RAPD and RFLP analyses. (19/77)

The discriminatory powers of random amplified polymorphic DNA (RAPD) analysis and restriction fragment length polymorphism (RFLP) were assessed for the detection and comparison of DNA modifications caused by an oxidative stress. DNA extracted from peracetic acid (PAA)-treated Escherichia coli H10407 was randomly amplified with the 10-mer primer OPZ14, which generated one stress-induced fragment. RFLP and RAPD profiles were hybridized by Southern blotting with the digoxigenin-labelled RAPD product. Untreated and PAA-treated cells had difference band profiles. The results indicate that RAPD analysis could be used as a discriminatory tool for investigating genetic rearrangements in E. coli caused by oxidative stress and that RFLP analysis could be used to confirm the rearrangements.  (+info)

In vivo and in vitro evaluation of the efficacy of a peracetic acid-based disinfectant for decontamination of acrylic resins. (20/77)

The purpose of this study was to assess the antimicrobial efficacy of a peracetic acid-based disinfectant for decontamination of heat-polymerized, chemically activated and microwave-polymerized acrylic resins. Resin plates were contaminated in vivo upon intraoral use by 10 volunteers for 7 nights and slabs were contaminated in vitro by contact with Bacillus subtilis and Bacillus stearothermophilus. The contaminated acrylic resin specimens were immersed in a 0.2% peracetic acid-based disinfectant (Sterilife; Lifemed) for 5 min or 10 min and placed in a BHI culture medium. After incubation at 37 degrees C for 48 h, bacterial growth was assessed by analyzing turbidity of the medium. For all types of acrylic resin, no turbidity of the medium was observed for any of the resin specimens immersed in the peracetic acid-based disinfectant for either 5 or 10 min. On the other hand, the media with specimens that were not immersed in the disinfectant (control) showed turbidity in 100% of the cases, indicating the presence of microorganisms in both tested conditions. In conclusion, immersion for at least 5 min in a 0.2% peracetic acid-based disinfectant promoted high-level disinfection of heat-polymerized, chemically activated and microwave-polymerized acrylic resins contaminated with either human saliva or Bacillus subtilis or Bacillus stearothermophilus.  (+info)

A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. (21/77)

The most abundant and biologically active green tea catechin, (-)-epigallocatechin-3-gallate or (-)-EGCG, has been shown to act as a proteasome inhibitor and tumor cell death inducer. However, (-)-EGCG is unstable under physiologic conditions and has poor bioavailability. Previously, in an attempt to increase the stability of (-)-EGCG, we introduced peracetate protections to its reactive hydroxyl groups and showed that this peracetate-protected (-)-EGCG [Pro-EGCG (1); formerly named compound 1] could be converted into (-)-EGCG under cell-free conditions. In the current study, we provide evidence that when cultured human breast cancer MDA-MB-231 cells were treated with Pro-EGCG (1), (-)-EGCG was not only converted but also accumulated, accompanied by enhanced levels of proteasome inhibition, growth suppression, and apoptosis induction, compared with cells treated with natural (-)-EGCG. To investigate the potential use of Pro-EGCG (1) as a novel prodrug that converts to a cellular proteasome inhibitor and anticancer agent in vivo, MDA-MB-231 tumors were induced in nude mice, followed by treatment with Pro-EGCG (1) or (-)-EGCG for 31 days. Results of this in vivo study showed a significant inhibition of breast tumor growth by Pro-EGCG (1), compared with (-)-EGCG, associated with increased proteasome inhibition and apoptosis induction in tumor tissues. In conclusion, we have shown that Pro-EGCG (1) increases the bioavailability, stability, and proteasome-inhibitory and anticancer activities of (-)-EGCG in human breast cancer cells and tumors, suggesting its potential use for cancer prevention and treatment.  (+info)

Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue. (22/77)

Biocide inactivation of Bacillus anthracis spores in the presence of food residues after a 10-min treatment time was investigated. Spores of nonvirulent Bacillus anthracis strains 7702, ANR-1, and 9131 were mixed with water, flour paste, whole milk, or egg yolk emulsion and dried onto stainless-steel carriers. The carriers were exposed to various concentrations of peroxyacetic acid, sodium hypochlorite (NaOCl), or hydrogen peroxide (H(2)O(2)) for 10 min at 10, 20, or 30 degrees C, after which time the survivors were quantified. The relationship between peroxyacetic acid concentration, H(2)O(2) concentration, and spore inactivation followed a sigmoid curve that was accurately described using a four-parameter logistic model. At 20 degrees C, the minimum concentrations of peroxyacetic acid, H(2)O(2), and NaOCl (as total available chlorine) predicted to inactivate 6 log(10) CFU of B. anthracis spores with no food residue present were 1.05, 23.0, and 0.78%, respectively. At 10 degrees C, sodium hypochlorite at 5% total available chlorine did not inactivate more than 4 log(10) CFU. The presence of the food residues had only a minimal effect on peroxyacetic acid and H(2)O(2) sporicidal efficacy, but the efficacy of sodium hypochlorite was markedly inhibited by whole-milk and egg yolk residues. Sodium hypochlorite at 5% total available chlorine provided no greater than a 2-log(10) CFU reduction when spores were in the presence of egg yolk residue. This research provides new information regarding the usefulness of peroxygen biocides for B. anthracis spore inactivation when food residue is present. This work also provides guidance for adjusting decontamination procedures for food-soiled and cold surfaces.  (+info)

Facile preparation of peracetates and per-3-bromobenzoates of alpha-mono- and disaccharides. (23/77)

A simple and convenient method for the preparation of fully acetylated and (3- bromo)benzoylated alpha-monosaccharides and disaccharides through vigorous mechanical mixing of solid reactants on a high speed shaker is described. Using this technique a variety of alpha-acylated sugars are prepared, including penta-O-acetyl-alpha-D-galactopyranose, penta-O- acetyl-alpha-D-glucopyranose, penta-O-acetyl-alpha-D-mannopyranose, octa-O-acetyl-alpha-lactose, penta-O-(3-bromo)benzoyl-alpha-D-galactopyranose, penta-O-(3-bromo)benzoyl-alpha-D-gluco- pyranose, penta-O-(3-bromo)benzoyl-alpha-D-mannopyranose, and octa-O-(3-bromo)benzoyl- alpha-lactose.  (+info)

Identification by quantitative carrier test of surrogate spore-forming bacteria to assess sporicidal chemicals for use against Bacillus anthracis. (24/77)

The spores of six strains of Bacillus anthracis (four virulent and two avirulent) were compared with those of four other types of spore-forming bacteria for their resistance to four liquid chemical sporicides (sodium hypochlorite at 5,000 ppm available chlorine, 70,000 ppm accelerated H2O2, 1,000 ppm chlorine dioxide, and 3,000 ppm peracetic acid). All test bacteria were grown in a 1:10 dilution of Columbia broth (with manganese) incubated at 37 degrees C for 72 h. The spore suspensions, heat treated at 80 degrees C for 10 min to rid them of any viable vegetative cells, contained 1 x 10(8) to 3 x 10(8) CFU/ml. The second tier of the quantitative carrier test (QCT-2), a standard of ASTM International, was used to assess for sporicidal activity, with disks (1 cm in diameter) of brushed and magnetized stainless steel as spore carriers. Each carrier, with 10 microl (> or = 10(6) CFU) of the test spore suspension in a soil load, was dried and then overlaid with 50 microl of the sporicide being evaluated. The contact time at room temperature ranged from 5 to 20 min, and the arbitrarily set criterion for acceptable sporicidal activity was a reduction of > or = 10(6) in viable spore count. Each test was repeated at least three times. In the final analysis, the spores of Bacillus licheniformis (ATCC 14580(T)) and Bacillus subtilis (ATCC 6051(T)) proved to be generally more resistant than the spores of the strains of B. anthracis tested. The use of one or both of the safe and easy-to-handle surrogates identified here should help in developing safer and more-effective sporicides and also in evaluating the field effectiveness of existing and newer formulations in the decontamination of objects and surfaces suspected of B. anthracis contamination.  (+info)