Angiotensin-converting enzyme is upregulated in the proximal tubules of rats with intense proteinuria. (1/2457)

Persistent proteinuria is considered a deleterious prognostic factor in most progressive renal diseases. However, the mechanisms by which proteinuria induces renal damage remain undetermined. Since proximal tubular cells possess all the machinery to generate angiotensin II (Ang II), we approached the hypothesis that proteinuria could elicit the renal activation of the renin-angiotensin system in a model of intense proteinuria and interstitial nephritis induced by protein overload. After uninephrectomy (UNX), Wistar-Kyoto rats received daily injections of 1 g BSA or saline for 8 days. The mean peak of proteinuria was observed at the fourth day (538+/-89 versus 3+/-1 mg/24 h in UNX controls; n=12; P<0.05) and was increased during the whole study period (at the eighth day: 438+/-49 mg/24 h; n=12; P=NS). Morphological examination of the kidneys at the end of the study showed marked tubular lesions (atrophy, vacuolization, dilation, and casts), interstitial infiltration of mononuclear cells, and mesangial expansion. In relation to UNX control rats, renal cortex of BSA-overloaded rats showed an increment in the gene expression of angiotensinogen (2.4-fold) and angiotensin-converting enzyme (ACE) (2.1-fold), as well as a diminution in renin gene expression. No changes were observed in angiotensin type 1 (AT1) receptor mRNA expression in both groups of rats. By in situ reverse transcription-polymerase chain reaction and immunohistochemistry, ACE expression (gene and protein) was mainly localized in proximal and distal tubules and in the glomeruli. By immunohistochemistry, angiotensinogen was localized only in proximal tubules, and AT1 receptor was localized mainly in proximal and distal tubules. In the tubular brush border, an increase in ACE activity was also seen (5. 5+/-0.5 versus 3.1+/-0.7 U/mg protein x10(-4) in UNX control; n=7; P<0.05). Our results show that in the kidney of rats with intense proteinuria, ACE and angiotensinogen were upregulated, while gene expression of renin was inhibited and AT1 was unmodified. On the whole, these data suggest an increase in Ang II intrarenal generation. Since Ang II can elicit renal cell growth and matrix production through the activation of AT1 receptor, this peptide may be responsible for the tubulointerstitial lesions occurring in this model. These results suggest a novel mechanism by which proteinuria may participate in the progression of renal diseases.  (+info)

Reduction of sodium deoxycholic acid-induced scratching behaviour by bradykinin B2 receptor antagonists. (2/2457)

1. Subcutaneous injection of sodium deoxycholic acid into the anterior of the back of male ddY mice elicited dose-dependent scratching of the injected site with the forepaws and hindpaws. 2. Up to 100 microg of sodium deoxycholic acid induced no significant increase in vascular permeability at the injection site as assessed by a dye leakage method. 3. Bradykinin (BK) B2 receptor antagonists, FR173657 and Hoe140, significantly decreased the frequency of scratching induced by sodium deoxycholic acid. 4. Treatment with aprotinin to inhibit tissue kallikrein reduced the scratching behaviour induced by sodium deoxycholic acid, whereas treatment with soybean trypsin inhibitor to inhibit plasma kallikrein did not. 5. Although injection of kininase II inhibitor, lisinopril together with sodium deoxycholic acid did not alter the scratching behaviour, phosphoramidon, a neutral endopeptidase inhibitor, significantly increased the frequency of scratching. 6. Homogenates of the skin excised from the backs of mice were subjected to gel-filtration column chromatography followed by an assay of kinin release by trypsin from each fraction separated. Less kinin release from the fractions containing kininogen of low molecular weight was observed in the skin injected with sodium deoxycholic acid than in normal skin. 7. The frequency of scratching after the injection of sodium deoxycholic acid in plasma kininogen-deficient Brown Norway Katholiek rats was significantly lower than that in normal rats of the same strain, Brown Norway Kitasato rats. 8. These results indicate that BK released from low-molecular-weight kininogen by tissue kallikrein, but not from high-molecular-weight kininogen by plasma kallikrein, may be involved in the scratching behaviour induced by the injection of sodium deoxycholic acid in the rodent.  (+info)

Tranilast suppresses vascular chymase expression and neointima formation in balloon-injured dog carotid artery. (3/2457)

BACKGROUND: Activation of vascular chymase plays a major role in myointimal hypertrophy after vascular injury by augmenting the production of angiotensin (ANG) II. Because chymase is synthesized mainly in mast cells, we assumed that the chymase-dependent ANG II formation could be downregulated by tranilast, a mast cell-stabilizing antiallergic agent. We have assessed inhibitory effects of tranilast on neointima formation after balloon injury in the carotid artery of dogs, which share a similar ANG II-forming chymase with humans, and further explored the pathophysiological significance of vascular chymase. METHODS AND RESULTS: Either tranilast (50 mg/kg BID) or vehicle was orally administered to beagles for 2 weeks before and 4 weeks after balloon injury. Four weeks after the injury, remarkable neointima was formed in the carotid arteries of vehicle-treated dogs. Chymase mRNA levels and chymaselike activity of vehicle-treated injured arteries were increased 10.2- and 4.8-fold, respectively, those of uninjured arteries. Angiotensin-converting enzyme (ACE) activity was slightly increased in the injured arteries, whereas ACE mRNA levels were not. Tranilast treatment completely prevented the increase in chymaselike activity, reduced the chymase mRNA levels by 43%, and decreased the carotid intima/media ratio by 63%. In vehicle-treated injured arteries, mast cell count in the adventitia showed a great increase, which was completely prevented by the tranilast treatment. Vascular ACE activity and mRNA levels were unaffected by tranilast. CONCLUSIONS: Tranilast suppressed chymase gene expression, which was specifically activated in the injured arteries, and prevented neointima formation. Suppression of the chymase-dependent ANG II-forming pathway may contribute to the beneficial effects of tranilast.  (+info)

A parametric copula model for analysis of familial binary data. (4/2457)

Modeling the joint distribution of a binary trait (disease) within families is a tedious challenge, owing to the lack of a general statistical model with desirable properties such as the multivariate Gaussian model for a quantitative trait. Models have been proposed that either assume the existence of an underlying liability variable, the reality of which cannot be checked, or provide estimates of aggregation parameters that are dependent on the ordering of family members and on family size. We describe how a class of copula models for the analysis of exchangeable categorical data can be incorporated into a familial framework. In this class of models, the joint distribution of binary outcomes is characterized by a function of the given marginals. This function, referred to as a "copula," depends on an aggregation parameter that is weakly dependent on the marginal distributions. We propose to decompose a nuclear family into two sets of equicorrelated data (parents and offspring), each of which is characterized by an aggregation parameter (alphaFM and alphaSS, respectively). The marginal probabilities are modeled through a logistic representation. The advantage of this model is that it provides estimates of the aggregation parameters that are independent of family size and does not require any arbitrary ordering of sibs. It can be incorporated easily into segregation or combined segregation-linkage analysis and does not require extensive computer time. As an illustration, we applied this model to a combined segregation-linkage analysis of levels of plasma angiotensin I-converting enzyme (ACE) dichotomized into two classes according to the median. The conclusions of this analysis were very similar to those we had reported in an earlier familial analysis of quantitative ACE levels.  (+info)

Tissue-specific changes of type 1 angiotensin II receptor and angiotensin-converting enzyme mRNA in angiotensinogen gene-knockout mice. (5/2457)

This study examined whether type 1 angiotensin II receptor (AT1) and angiotensin-converting enzyme (ACE) mRNAs are regulated during dietary salt loading in angiotensinogen gene-knockout (Atg-/-) mice which are genetically deficient in endogenous production of angiotensin II. Wild-type (Atg+/+) and Atg-/- mice were fed a normal-salt (0.3% NaCl) or a high-salt (4% NaCl) diet for 2 weeks. The mRNA levels were measured by Northern blot analysis. In Atg+/+ mice, concentrations of plasma angiotensin peptides were decreased by salt loading, whereas the treatment increased the brainstem, cardiac, pulmonary, renal cortex, gastric and intestinal AT1 mRNA levels. Salt loading also enhanced renal cortex ACE mRNA levels in Atg+/+ mice. Although plasma angiotensin peptides and urinary aldosterone excretion were not detected in Atg-/- mice, salt loading increased blood pressure in Atg-/- mice. In Atg-/- mice, pulmonary, renal cortex, gastric and intestinal AT1, and renal cortex and intestinal ACE mRNA levels were higher than those in Atg+/+ mice. However, salt loading upregulated AT1 mRNA expression only in the liver of Atg-/- mice, and the treatment did not affect ACE mRNA levels in Atg-/- mice. Furthermore, although the levels of ACE enzymatic activity showed the same trend with the ACE mRNA levels in the lung, renal cortex and intestine of both Atg-/- and Atg+/+ mice, the results of radioligand binding assay showed that cardiac expression of AT1 protein was regulated differently from AT1 mRNA expression both in Atg-/- and Atg+/+ mice. Thus, expression of AT1 and ACE is regulated by salt loading in a tissue-specific manner that appears to be mediated, at least partly, by a mechanism other than changes in the circulating or tissue levels of angiotensin peptides.  (+info)

Effect of angiotensin converting enzyme inhibition on sudden cardiac death in patients following acute myocardial infarction. A meta-analysis of randomized clinical trials. (6/2457)

Estimate the effect of angiotensin converting enzyme (ACE) inhibitors on the risk of sudden cardiac death (SCD) following myocardial infarction (MI). BACKGROUND: Trials in post-MI patients have shown that ACE inhibitor therapy reduces mortality. However, the effect on SCD as a mechanism has not been clarified. METHODS: Trials of ACE inhibitor therapy following MI reported between January, 1978 and August, 1997 were identified. Studies were included if they met the following criteria: 1) randomized comparison of ACE inhibitor to placebo within 14 days of MI; 2) study duration/blinded follow-up of > or =6 weeks; 3) the number of deaths and modes of death were reported or could be obtained from the investigators. RESULTS: We identified 374 candidate articles, of which 15 met the inclusion criteria. The 15 trials included 15,104 patients, 2,356 of whom died. Most (87%) fatalities were cardiovascular and 900 were SCDs. A significant reduction in SCD risk or a trend towards this was observed in all of the larger (N > 500) trials. Overall, ACE inhibitor therapy resulted in significant reductions in risk of death (random effects odds ratio [OR] = 0.83; 95% confidence interval [CI] 0.71-0.97), cardiovascular death (OR = 0.82; 95% CI 0.69-0.97) and SCD (OR = 0.80; 95% CI 0.70-0.92). CONCLUSIONS: This analysis is consistent with prior reports showing that ACE inhibitors decrease the risk of death following a recent MI by reducing cardiovascular mortality. Moreover, this analysis suggests that a reduction in SCD risk with ACE inhibitors is an important component of this survival benefit.  (+info)

Abnormal flow-mediated epicardial vasomotion in human coronary arteries is improved by angiotensin-converting enzyme inhibition: a potential role of bradykinin. (7/2457)

OBJECTIVES: This study was performed to determine whether angiotensin converting enzyme (ACE) inhibition improves endothelium-dependent flow-mediated vasodilation in patients with atherosclerosis or its risk factors and whether this is mediated by enhanced bradykinin activity. BACKGROUND: Abnormal coronary vasomotion due to endothelial dysfunction contributes to myocardial ischemia in patients with atherosclerosis, and its reversal may have an antiischemic action. Previous studies have shown that ACE inhibition improves coronary endothelial responses to acetylcholine, but whether this is accompanied by improved responses to shear stress remains unknown. METHODS: In 19 patients with mild atherosclerosis, metabolic vasodilation was assessed during cardiac pacing. Pacing was repeated during separate intracoronary infusions of low-dose bradykinin (BK) and enalaprilat. Endothelium-dependent and -independent vasodilation was estimated with intracoronary BK and sodium nitroprusside respectively. RESULTS: Enalaprilat did not alter either resting coronary vascular tone or dilation with sodium nitroprusside, but potentiated BK-mediated dilation. Epicardial segments that constricted abnormally with pacing (-5+/-1%) dilated (3+/-2%) with pacing in the presence of enalaprilat (p = 0.002). Similarly, BK at a concentration (62.5 ng/min) that did not alter resting diameter in the constricting segments also improved the abnormal response to a 6+/-1% dilation (p < 0.001). Cardiac pacing-induced reduction in coronary vascular resistance of 27+/-4% (p < 0.001) remained unchanged after enalaprilat. CONCLUSIONS: Thus ACE inhibition: A) selectively improved endothelium-dependent but not-independent dilation, and B) abolished abnormal flow-mediated epicardial vasomotion in patients with endothelial dysfunction, in part, by increasing endogenous BK activity.  (+info)

Identification of kallidin degrading enzymes in the isolated perfused rat heart. (8/2457)

Kallidin (KD) is an important vasoactive kinin whose physiological effects are strongly dependent on its degradation through local kininases. In the present study, we examined the spectrum of these enzymes and their contribution to KD degradation in isolated perfused rat hearts. By inhibiting angiotensin-converting enzyme (ACE), aminopeptidase M (APM) and neutral endopeptidase (NEP) with ramiprilat (0.25 microM), amastatin (40 microM) and phosphoramidon (1 microM), respectively, relative kininase activities were obtained. APM (44%) and ACE (35%) are the main KD degrading enzymes in rat heart; NEP (7%) plays a minor role. A participation of carboxypeptidase N (CPN) could not be found.  (+info)