Apoptosis is induced in both drug-sensitive and multidrug-resistant hepatoma cells by somatostatin analogue TT-232. (65/3908)

Clinical resistance to chemotherapeutic drugs is an important problem in the treatment of cancer; the circumvention of resistance has become one of the basic goals of cancer therapy. The most frequent form of primary liver cancer is hepatocellular carcinoma, which is essentially refractory to chemotherapy. We earlier showed that TT-232, a new somatostatin analogue developed in our laboratory, exerted a strong antiproliferative effect both in vitro and in vivo, but no growth hormone release inhibitory or antisecretory activity. Here we report that TT-232 has a pronounced antiproliferative effect on differentiated and dedifferentiated, drug-sensitive and multidrug-resistant hepatocellular carcinoma cell lines. TT-232 induces apoptosis at comparable levels in all these hepatoma variants demonstrating that the multidrug resistance of hepatomas does not correlate with a reduced susceptibility to apoptosis induction. These results clearly reveal that the machinery involved in apoptosis is functional in both drug-sensitive and resistant hepatoma variants and can be activated by the somatostatin analogue TT-232.  (+info)

Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. (66/3908)

Nonribosomal peptide synthesis is achieved in prokaryotes and lower eukaryotes by the thiotemplate function of large, modular enzyme complexes known collectively as peptide synthetases. These and other multifunctional enzyme complexes, such as polyketide synthases, are of interest due to their use in unnatural-product or combinatorial biosynthesis (R. McDaniel, S. Ebert-Khosla, D. A. Hopwood, and C. Khosla, Science 262:1546-1557, 1993; T. Stachelhaus, A. Schneider, and M. A. Marahiel, Science 269:69-72, 1995). Most nonribosomal peptides from microorganisms are classified as secondary metabolites; that is, they rarely have a role in primary metabolism, growth, or reproduction but have evolved to somehow benefit the producing organisms. Cyanobacteria produce a myriad array of secondary metabolites, including alkaloids, polyketides, and nonribosomal peptides, some of which are potent toxins. This paper addresses the molecular genetic basis of nonribosomal peptide synthesis in diverse species of cyanobacteria. Amplification of peptide synthetase genes was achieved by use of degenerate primers directed to conserved functional motifs of these modular enzyme complexes. Specific detection of the gene cluster encoding the biosynthetic pathway of the cyanobacterial toxin microcystin was shown for both cultured and uncultured samples. Blot hybridizations, DNA amplifications, sequencing, and evolutionary analysis revealed a broad distribution of peptide synthetase gene orthologues in cyanobacteria. The results demonstrate a molecular approach to assessing preexpression microbial functional diversity in uncultured cyanobacteria. The nonribosomal peptide biosynthetic pathways detected may lead to the discovery and engineering of novel antibiotics, immunosuppressants, or antiviral agents.  (+info)

Acetylcholine and epibatidine binding to muscle acetylcholine receptors distinguish between concerted and uncoupled models. (67/3908)

The muscle acetylcholine receptor (AChR) has served as a prototype for understanding allosteric mechanisms of neurotransmitter-gated ion channels. The phenomenon of cooperative agonist binding is described by the model of Monod et al. (Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118; MWC model), which requires concerted switching of the two binding sites between low and high affinity states. The present study examines binding of acetylcholine (ACh) and epibatidine, agonists with opposite selectivity for the two binding sites of mouse muscle AChRs. We expressed either fetal or adult AChRs in 293 HEK cells and measured agonist binding by competition against the initial rate of 125I-alpha-bungarotoxin binding. We fit predictions of the MWC model to epibatidine and ACh binding data simultaneously, taking as constants previously determined parameters for agonist binding and channel gating steps, and varying the agonist-independent parameters. We find that the MWC model describes the apparent dissociation constants for both agonists but predicts Hill coefficients that are far too steep. An Uncoupled model, which relaxes the requirement of concerted state transitions, accurately describes binding of both ACh and epibatidine and provides parameters for agonist-independent steps consistent with known aspects of AChR function.  (+info)

F-actin as a functional target for retro-retinoids: a potential role in anhydroretinol-triggered cell death. (68/3908)

The retro-retinoids, metabolites of vitamin A (retinol), belong to a family of lipophilic signalling molecules implicated in regulation of cell growth and survival. Growth-promoting properties have been ascribed to 14-hydroxy-retro-retinol (14HRR), while anhydroretinol (AR) was discovered to act as a natural antagonist triggering growth arrest and death by apoptosis. Based on morphological studies and inhibition of apoptosis by the kinase blocker, herbimycin A, it has been suggested that retro-retinoids exhibit their function in the cytosolic compartment. F-actin emerged as a functional target for retro-retinoid action. By FACS analysis and fluorescence microscopy of phalloidin-FITC labeled cells we demonstrated that F-actin reorganization was an early event in AR-triggered apoptosis. Fluorescence images of AR-treated fibroblasts displayed short, thick, stick-like and punctate structures, and membrane ruffles at the cell periphery along with an increased diffuse staining pattern. Reversal of the AR effect by 14HRR or retinol indicates that F-actin is a common site for regulation by retro-retinoids. Inhibition of both cell death and actin depolymerisation by bcl-2 implies that cytoskeleton reorganization is downstream of bcl-2-related processes. Furthermore, stabilization of microfilaments by jasplakinolide increased the survival potential of AR treated cells, while weakening the cytoskeleton by cytochalasin B abetted apoptosis. Thus the cytoskeleton is an important way station in a communication network that decides whether a cell should live or die.  (+info)

Lichenysins G, a novel family of lipopeptide biosurfactants from Bacillus licheniformis IM 1307: production, isolation and structural evaluation by NMR and mass spectrometry. (69/3908)

A series of 9 lactonic lipopeptide biosurfactants was isolated from Bacillus licheniformis IM 1307 as representatives of the lichenysin group and we propose to name them lichenysins G. They were recovered from the culture medium as complex mixtures of molecules having different peptide sequences and different structures of beta-hydroxy fatty acids. Their separation was achieved by a reversed-phase HPLC method leading to eight well-separated compounds. The complete structure of individual isoforms was proposed following the results of amino acid and fatty acid analysis, LSI-MS and 2D NMR spectroscopies. Compared to surfactin, lichenysins G are at least 10 fold more efficient biosurfactants.  (+info)

Structure elucidation of Sch 20562, a glucosidic cyclic dehydropeptide lactone--the major component of W-10 antifungal antibiotic. (70/3908)

A novel bacterium designated as Aeromonas sp. W-10 produces the antibiotic W-10 complex which comprises of two major and several minor components. The two major components from this complex, Sch 20562 (1) and Sch 20561 (1a), are of biological interest in view of their potent antifungal activity. The chemical degradation studies utilized for the assignment of structure 1 for Sch 20562 are described here. Some of the noteworthy diversity of structural features in this glucosidic cyclic dehydrononapeptide lactone 1 are: an N-terminal (D)-beta-hydroxymyristyl unit, three D-amino acid units, two (E)-alpha-aminocrotonyl units, and an O-alpha-D-glucosyl-N-methyl-L-allo-threonine unit. The structure determination of 1 utilized the selective cleavage of the dehydropeptide units by ozonolysis to form fragments that were sequenced by mass spectrometry. The stereochemistry of the amino acid units were assigned by isolation of the free amino acids from the hydrolysates of the fragments. The stereochemistry of the alpha-aminocrotonyl units and the glucosidic linkage were assigned by nmr spectroscopy and molecular rotation data.  (+info)

Structure elucidation of Sch 20561, a cyclic dehydropeptide lactone--a major component of W-10 antifungal antibiotic. (71/3908)

Antibiotic W-10 is a fermentation complex produced by the bacterium Aeromonas sp. W-10. The cyclic dehydropeptide lactones Sch 20562 (1) and Sch 20561 (2) are the major components of this fermentation complex and are of biological interest in view of their unique structural features and potent antifungal activity. The chemical degradation studies that were utilized in the assignment of structure 2 for Sch 20561 are described here. The structure determination of 2 made use of the ozonolytic cleavage of the dehydropeptide units to form fragments that were sequenced by mass spectrometry. The cyclic dehydropeptide lactone Sch 20561 (2) was found to be the aglycone of Sch 20562 (1) and these two natural products were correlated by a chemical transformation involving the deglucosidation of 1 to form 2.  (+info)

Characterization of receptors mediating AVP- and OT-induced glucagon release from the rat pancreas. (72/3908)

We characterized the receptors that mediate arginine vasopressin (AVP)- and oxytocin (OT)-induced glucagon release by use of a number of antagonists in the perfused rat pancreas and the fluorescence imaging of the receptors. AVP and OT (3 pM-3 nM) increased glucagon release in a concentration-dependent manner. The antagonist with potent V(1b) receptor-blocking activity, CL-4-84 (10 nM), abolished AVP (30 pM)-induced glucagon release but did not alter OT (30 pM)-induced glucagon release. d(CH(2))(5)[Tyr(Me)(2)]AVP (10 nM), a V(1a) receptor antagonist, and L-366,948 (10 nM), a highly specific OT-receptor antagonist, failed to inhibit AVP-induced glucagon release. In contrast, L-366,948 (10 nM) abolished OT (30 pM)-induced glucagon release but did not change the effect of AVP. Fluorescent microscopy of rat pancreatic sections showed that fluorescence-labeled AVP and OT bound to their receptors in the islets of Langerhans and that the bindings were inhibited by 1 microM of Cl-4-84 and L-366,948, respectively. Because AVP and OT at physiological concentrations (3-30 pM) increased glucagon release, we conclude that AVP and OT increase glucagon release under the physiological condition through the activation of V(1b) and OT receptors, respectively.  (+info)