Loading...
(1/3908) Role of endothelin in the increased vascular tone of patients with essential hypertension.

We investigated the possible role of endothelin in the increased vasoconstrictor tone of hypertensive patients using antagonists of endothelin receptors. Forearm blood flow (FBF) responses (strain-gauge plethysmography) to intraarterial infusion of blockers of endothelin-A (ETA) (BQ-123) and endothelin-B (ETB) (BQ-788) receptors, separately and in combination, were measured in hypertensive patients and normotensive control subjects. In healthy subjects, BQ-123 alone or in combination with BQ-788 did not significantly modify FBF (P=0.78 and P=0.63, respectively). In hypertensive patients, in contrast, BQ-123 increased FBF by 33+/-7% (P<0.001 versus baseline), and the combination of BQ-123 and BQ-788 resulted in a greater vasodilator response (63+/-12%; P=0.006 versus BQ-123 alone in the same subjects). BQ-788 produced a divergent vasoactive effect in the two groups, with a decrease of FBF (17+/-5%; P=0.004 versus baseline) in control subjects and transient vasodilation (15+/-7% after 20 minutes) in hypertensive patients (P<0.001, hypertensives versus controls). The vasoconstrictor response to endothelin-1 was slightly higher (P=0.04) in hypertensive patients (46+/-4%) than in control subjects (32+/-4%). Our data indicate that patients with essential hypertension have increased vascular endothelin activity, which may be of pathophysiological relevance to their increased vascular tone. In these patients, nonselective ETA and ETB blockade seems to produce a greater vasodilator effect than selective ETA blockade.  (+info)

(2/3908) Evidence for conservation of the vasopressin/oxytocin superfamily in Annelida.

Annetocin is a structurally and functionally oxytocin-related peptide isolated from the earthworm Eisenia foetida. We present the characterization of the annetocin cDNA. Sequence analyses of the deduced precursor polypeptide revealed that the annetocin precursor is composed of three segments: a signal peptide, an annetocin sequence flanked by a Gly C-terminal amidation signal and a Lys-Arg dibasic processing site, and a neurophysin domain, similar to other oxytocin family precursors. The proannetocin showed 37.4-45.8% amino acid homology to other prohormones. In the neurophysin domain, 14 cysteines and amino acid residues essential for association of a neurophysin with a vasopressin/oxytocin superfamily peptide were conserved, suggesting that the Eisenia neurophysin can bind to annetocin. Furthermore, in situ hybridization experiments demonstrated that the annetocin gene is expressed exclusively in neurons of the central nervous system predicted to be involved in regulation of reproductive behavior. These findings confirm that annetocin is a member of the vasopressin/oxytocin superfamily. This is the first identification of the cDNA encoding the precursor of an invertebrate oxytocin-related peptide and also the first report of the identification of an annelid vasopressin/oxytocin-related precursor.  (+info)

(3/3908) Treatment of advanced pancreatic cancer with the long-acting somatostatin analogue lanreotide: in vitro and in vivo results.

Fourteen patients with metastatic pancreatic adenocarcinoma were treated with the long-acting somatostatin (SST) analogue lanreotide. No objective response was obtained, and the median survival was 4 months (range 1.8-7 months). Pancreatic cancer could not be visualized by means of SST-receptor (R) scintigraphy in our patients. In vitro data also demonstrated absence of SSTR2 expression, suggesting pancreatic cancer not to be a potential target for treatment with SST analogues.  (+info)

(4/3908) Neuroprotection of the developing brain by systemic administration of vasoactive intestinal peptide derivatives.

Periventricular leukomalacia (PVL), a necrotic and often cystic lesion of the cerebral white matter occurring in very premature babies, is the leading cause of cerebral palsy in this population. Increased glutamate release and the excitotoxic cascade thus triggered may be critical factors in the development of PVL. The glutamatergic analog ibotenate injected intracerebrally into newborn mice produces white matter cysts that mimic human PVL. Concomitant injection of vasoactive intestinal peptide (VIP), a trophic factor, protects the white matter against excitotoxic lesions. The goal of the present study was to assess the protective properties of systemically injected VIP analogs against ibotenate-induced excitotoxic white matter lesions in newborn mice. VIP analogs were selected on the basis of their low susceptibility to endopeptidases and their potential ability to cross biological membranes. RO-25-1553, a long-lasting cyclic VIP analog, and stearyl-norleucine-VIP, a fatty derivative of VIP, reduced ibotenate-induced white matter cysts by up to 87% and 84%, respectively, when injected i.p. immediately after ibotenate. By comparison, i.p. coadministration of VIP and ibotenate was not protective against the excitotoxic insult. Furthermore, RO-25-1553 and stearyl-norleucine-VIP still induced significant neuroprotection of the developing white matter when injected systemically 8 and 12 h, respectively, after ibotenate, establishing these peptides as therapeutic agents in this murine model. VIP analogs may have therapeutic potential in human premature babies at high risk for PVL.  (+info)

(5/3908) Ultra-slow inactivation in mu1 Na+ channels is produced by a structural rearrangement of the outer vestibule.

While studying the adult rat skeletal muscle Na+ channel outer vestibule, we found that certain mutations of the lysine residue in the domain III P region at amino acid position 1237 of the alpha subunit, which is essential for the Na+ selectivity of the channel, produced substantial changes in the inactivation process. When skeletal muscle alpha subunits (micro1) with K1237 mutated to either serine (K1237S) or glutamic acid (K1237E) were expressed in Xenopus oocytes and depolarized for several minutes, the channels entered a state of inactivation from which recovery was very slow, i.e., the time constants of entry into and exit from this state were in the order of approximately 100 s. We refer to this process as "ultra-slow inactivation". By contrast, wild-type channels and channels with the charge-preserving mutation K1237R largely recovered within approximately 60 s, with only 20-30% of the current showing ultra-slow recovery. Coexpression of the rat brain beta1 subunit along with the K1237E alpha subunit tended to accelerate the faster components of recovery from inactivation, as has been reported previously of native channels, but had no effect on the mutation-induced ultra-slow inactivation. This implied that ultra-slow inactivation was a distinct process different from normal inactivation. Binding to the pore of a partially blocking peptide reduced the number of channels entering the ultra-slow inactivation state, possibly by interference with a structural rearrangement of the outer vestibule. Thus, ultra-slow inactivation, favored by charge-altering mutations at site 1237 in micro1 Na+ channels, may be analogous to C-type inactivation in Shaker K+ channels.  (+info)

(6/3908) Transcriptional down-regulation of the rabbit pulmonary artery endothelin B receptor during phenotypic modulation.

1. We confirmed that endothelium-independent contraction of the rabbit pulmonary artery (RPA) is mediated through both an endothelin A (ET(A)R) and endothelin B (ET(B2)R) receptor. 2. The response of endothelium-denuded RPA rings to endothelin-1 (ET-1, pD2 = 7.84 +/- 0.03) was only partially inhibited by BQ123 (10 microM), an ET(A)R antagonist. 3. Pretreatment with 1 nM sarafotoxin S6c (S6c), an ET(B)R agonist, desensitized the ET(B2)R and significantly attenuated the response to ET-3 (pD2 = 7.40 +/- 0.02 before, <6.50 after S6c). 4. Pretreatment with S6c had little effect on the response to ET-1, but BQ123 (10 microM) caused a parallel shift to the right of the residual ETAR-mediated response to ET-1 (pD2 = 7.84 +/- 0.03 before S6c, 7.93 +/- 0.03 after S6c, 6.81 +/- 0.05 after BQ123). 5. Binding of radiolabelled ET-1 to early passage cultures of RPA vascular smooth muscle cells (VSMC) displayed two patterns of competitive displacement characteristic of the ET(A)R (BQ123 pIC50 = 8.73 +/- 0.05) or ET(B2)R (S6c pIC50 = 10.15). 6. Competitive displacement experiments using membranes from late passage VSMC confirmed only the presence of the ET(A)R (ET-1 pIC50 = 9.3, BQ123 pIC50 = 8.0, S6c pIC50 < 6.0). 7. The ET(A)R was functionally active and coupled to rises in intracellular calcium which exhibited prolonged homologous desensitization. 8. Using a reverse transcriptase polymerase chain reaction for the rabbit ET(B2)R, we demonstrated the absence of mRNA expression in phenotypically modified VSMC. 9. We conclude that the ET(B2)R expressed by VSMC which mediates contraction of RPA is rapidly down-regulated at the transcriptional level during phenotypic modulation in vitro.  (+info)

(7/3908) Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis.

1. In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r. 2. We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum. 3. SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis. 4. The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leu,[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-betaAla) were both more potent in inhibiting endocytosis (50 x and 8 x greater respectively) against septide than against SP. 5. The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor.  (+info)

(8/3908) The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure.

A form of two-dimensional (2D) vibrational spectroscopy, which uses two ultrafast IR laser pulses, is used to examine the structure of a cyclic penta-peptide in solution. Spectrally resolved cross peaks occur in the off-diagonal region of the 2D IR spectrum of the amide I region, analogous to those in 2D NMR spectroscopy. These cross peaks measure the coupling between the different amide groups in the structure. Their intensities and polarizations relate directly to the three-dimensional structure of the peptide. With the help of a model coupling Hamiltonian, supplemented by density functional calculations, the spectra of this penta-peptide can be regenerated from the known solution phase structure. This 2D-IR measurement, with an intrinsic time resolution of less than 1 ps, could be used in all time regimes of interest in biology.  (+info)