Telomere associations in interphase nuclei: possible role in maintenance of interphase chromosome topology. (49/509)

The relative sizes of individual telomeres in cultured human cells under conditions of cell cycling, replicative quiescence, cell transformation and immortalization were determined using quantitative fluorescence in situ hybridization (Q-FISH) with a telomere-specific peptide nucleic acid (PNA) probe. Results obtained from analysis of telomere length profiles (TLPs), which display the distribution of relative telomere lengths for individual cells, confirmed telomere length heterogeneity at the single cell level and proportional shortening of telomere length during replicative aging of virus-transformed cells. TLPs also revealed that some telomeric ends of chromosomes are so closely juxtaposed within interphase nuclei that their fluorescent signals appear as a single spot. These telomeric associations (TAs) were far more prevalent in interphase nuclei of noncycling normal and virus-transformed cells than in their cycling counterparts. The number of interphase TAs per nucleus observed in late-passage E6/E7-transformed cells did not increase during progression to crisis, suggesting that telomere shortening does not increase the frequency of interphase TAs. Furthermore, interphase TAs were rarely observed in rapidly cycling, telomerase-positive, immortalized cells that exhibit somewhat shortened, but stabilized, telomere length through the activity of telomerase. Our overall results suggest that the number of interphase TAs is dependent more on whether or not cells are cycling than on telomere length, with TAs being most prominent in the nuclei of replicatively quiescent cells in which nonrandom (even preferred) chromosome spatial arrangements have been observed. We propose that interphase TAs may play a role in the generation and/or maintenance of nuclear architecture and chromosome positional stability in interphase nuclei, especially in cells with a prolonged G(1)/G(0) phase and possibly in terminally differentiated cells.  (+info)

Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. (50/509)

A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity.  (+info)

Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. (51/509)

Locked nucleic acid is an RNA derivative in which the ribose ring is constrained by a methylene linkage between the 2'-oxygen and the 4'-carbon. This conformation restriction increases binding affinity for complementarity sequences and provides an exciting new chemical approach for the control of gene expression and optimization of microarrays.  (+info)

Evaluation of a fluorescence in situ hybridization assay for differentiation between tuberculous and nontuberculous Mycobacterium species in smears of Lowenstein-Jensen and Mycobacteria Growth Indicator Tube cultures using peptide nucleic acid probes. (52/509)

A new fluorescence in situ hybridization assay based on peptide nucleic acid probes (MTB and NTM probes targeting tuberculous and nontuberculous species, respectively) for the identification of Mycobacterium tuberculosis complex and differentiation between tuberculous and nontuberculous mycobacteria (NTM) was evaluated using Lowenstein-Jensen (LJ) solid cultures from 100 consecutive sputum samples and 50 acid-fast bacillus (AFB)-positive sputum samples as well as Mycobacteria Growth Indicator Tube (MGIT) liquid cultures from 80 AFB-positive sputum samples. Mycobacterium species could be identified from a total of 53 LJ cultures and 77 MGIT cultures. The diagnostic specificities of the MTB and NTM probes were 100% for both cultures. The diagnostic sensitivities of the MTB probe for the LJ and MGIT cultures were 98 and 99%, respectively, whereas the sensitivities of the NTM probe were 57 and 100%, respectively. The relatively low sensitivity of the NTM probe was due to a high proportion of M. fortuitum, which is not identified by the probe.  (+info)

A bridge between the RNA and protein worlds? Accelerating delivery of chemical reactivity to RNA and DNA by a specific short peptide (AAKK)(4). (53/509)

BACKGROUND: RNA can catalyze diverse chemical reactions, leading to the hypothesis that an RNA world existed early in evolution. Today, however, catalysis by naturally occurring RNAs is rare and most chemical transformations within cells require proteins. This has led to interest in the design of small peptides capable of catalyzing chemical transformations. RESULTS: We demonstrate that a short lysine-rich peptide (AAKK)(4) can deliver a nucleophile to DNA or RNA and amplify the rate of chemical modification by up to 3400-fold. We also tested similar peptides that contain ornithine or arginine in place of lysine, peptides with altered stereochemistry or orientation, and peptides containing eight lysines but with different spacing. Surprisingly, these similar peptides function much less well, suggesting that specific combinations of amino acids, charge distribution, and stereochemistry are necessary for the rate enhancement by (AAKK)(4). CONCLUSIONS: By appending other reactive groups to (AAKK)(4) it should be possible to greatly expand the potential for small peptides to directly catalyze modification of DNA or RNA or to act as cofactors to promote ribozyme catalysis.  (+info)

Self-reporting PNA/DNA primers for PCR analysis. (54/509)

We report a new fluorogenic method for sealed-tube PCR analysis using a quencher-labeled peptide nucleic acid (Q-PNA) probe. The Q-PNA hybridizes to a complementary tag sequence located at the 5' end of a 5' fluorophore-labeled oligonucleotide primer, quenching the primer's fluorescence. Incorporation of the primer into a doublestranded amplicon causes displacement of the Q-PNA such that the fluorescence of the sample is a direct indication of the amplicon concentration. The Q-PNA is able to quench multiple primers bearing distinct 5' fluorophores in a single reaction. We show realtime quantitative detection of a single-copy gene, K-ras, from human genomic DNA, as well as an endpoint multiplex assay for Chlamydia trachomatis and Neisseria gonorrhoeae targets. Because the Q-PNA may be used to quench any primer that contains the 5' tag sequence, it is possible to inexpensively adapt an existing primer set for use in a self-reporting fluorescent assay by including the tag sequence in one of the primers.  (+info)

Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. (55/509)

The selective manipulation of mitochondrial DNA (mtDNA) replication and expression within mammalian cells has proven difficult. One promising approach is to use peptide nucleic acid (PNA) oligomers, nucleic acid analogues that bind selectively to complementary DNA or RNA sequences inhibiting replication and translation. However, the potential of PNAs is restricted by the difficulties of delivering them to mitochondria within cells. To overcome this problem we conjugated a PNA 11mer to a lipophilic phosphonium cation. Such cations are taken up by mitochondria through the lipid bilayer driven by the membrane potential across the inner membrane. As anticipated, phosphonium-PNA (ph-PNA) conjugates of 3.4-4 kDa were imported into both isolated mitochondria and mitochondria within human cells in culture. This was confirmed by using an ion-selective electrode to measure uptake of the ph-PNA conjugates; by cell fractionation in conjunction with immunoblotting; by confocal microscopy; by immunogold-electron microscopy; and by crosslinking ph-PNA conjugates to mitochondrial matrix proteins. In all cases dissipating the mitochondrial membrane potential with an uncoupler prevented ph-PNA uptake. The ph-PNA conjugate selectively inhibited the in vitro replication of DNA containing the A8344G point mutation that causes the human mtDNA disease 'myoclonic epilepsy and ragged red fibres' (MERRF) but not the wild-type sequence that differs at a single nucleotide position. Therefore these modified PNA oligomers retain their selective binding to DNA and the lipophilic cation delivers them to mitochondria within cells. When MERRF cells were incubated with the ph-PNA conjugate the ratio of MERRF to wild-type mtDNA was unaffected, even though the ph-PNA content of the mitochondria was sufficient to inhibit MERRF mtDNA replication in a cell-free system. This unexpected finding suggests that nucleic acid derivatives cannot bind their complementary sequences during mtDNA replication. In summary, we have developed a new strategy for targeting PNA oligomers to mitochondria and used it to determine the effects of PNA on mutated mtDNA replication in cells. This work presents new approaches for the manipulation of mtDNA replication and expression, and will assist in the development of therapies for mtDNA diseases.  (+info)

In vivo nuclear delivery of oligonucleotides via hybridizing bifunctional peptides. (56/509)

Linking proteins directly to nucleic acids has been a complex task. By hybridizing a bifunctional peptide nucleic acid (PNA) consisting of a nucleic acid binding moiety and a nuclear localization signal (NLS) we have previously demonstrated that it is possible to link protein functions directly to nucleic acids containing a PNA target site. By hybridizing fluorescently labeled oligonucleotides to PNA-NLS molecules and subsequently transfecting different organs in vivo we demonstrate an active nuclear translocation of the PNA-NLS/oligonucleotide complex in different mouse organs.  (+info)