Identification of two genetic groups in Bacteroides fragilis by multilocus enzyme electrophoresis: distribution of antibiotic resistance (cfiA, cepA) and enterotoxin (bft) encoding genes. (33/935)

Ninety-three Bacteroides fragilis strains of different origin were analysed by multilocus enzyme electrophoresis (MLEE). Fourteen of the 15 genetic loci analysed were polymorphic, whilst nucleoside phosphorylase was monomorphic. There was a mean of six alleles per locus and a mean genetic diversity of 0.393. Cluster analysis identified 90 electrophoretic types (ETs) separated into two major phylogenetic divisions at a genetic distance of 0.70. Division I consisted of 81 ETs carrying the endogenous class A beta-lactamase gene cepA, whereas division II comprised 9 ETs carrying the class B beta-lactamase gene cfiA, but not cepA. The presence of these two genes was assessed by PCR and the expression of the cfiA gene was investigated by determining the level of resistance to the antibiotic imipenem. MLEE showed a smaller genetic distance among the genotypes of the imipenem-resistant than among the imipenem-susceptible strains. No other particular cluster was observed. The enterotoxin gene (bft) was detected by PCR: DNA sequencing of the products obtained showed that the different bft alleles (bft-1, bft-2 and bft-3) were scattered randomly troughout the phylogenetic tree. No association between distinct clones and clinical manifestations (sepsis, abscesses, diarrhoea), geographical origin or host origin (human or animal) could be found.  (+info)

Hypermodification of tRNA in Thermophilic archaea. Cloning, overexpression, and characterization of tRNA-guanine transglycosylase from Methanococcus jannaschii. (34/935)

tRNA is structurally unique among nucleic acids in harboring an astonishing diversity of modified nucleosides. Two structural variants of the hypermodified nucleoside 7-deazaguanosine have been identified in tRNA: queuosine, which is found at the wobble position of the anticodon in bacterial and eukaryotic tRNA, and archaeosine, which is found at position 15 of the D-loop in archaeal tRNA. From homology searching of the Methanococcus jannaschii genome, a gene coding for an enzyme in the biosynthesis of archaeosine (tgt) was identified and cloned. The tgt gene was overexpressed in an Escherichia coli expression system, and the recombinant tRNA-guanine transglycosylase enzyme was purified and characterized. The enzyme catalyzes a transglycosylation reaction in which guanine is eliminated from position 15 of the tRNA and an archaeosine precursor (preQ(0)) is inserted. The enzyme is able to utilize both guanine and the 7-deazaguanine base preQ(0) as substrates, but not other 7-deazaguanine bases, and is able to modify tRNA from all three phylogenetic domains. The enzyme shows optimal activity at high temperature and acidic pH, consistent with the optimal growth conditions of M. jannaschii. The nature of the temperature dependence is consistent with a requirement for some degree of tRNA tertiary structure in order for recognition by the enzyme to occur.  (+info)

Isolation and characterization of purine-nucleoside phosphorylase-deficient T-lymphoma cells and secondary mutants with altered ribonucleotide reductase: genetic model for immunodeficiency disease. (35/935)

The inherited deficiency of purine-nucleoside phosphorylase (PNPase; purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) in humans is associated with a severe deficiency of the T lymphocytes of the immune system. Because of the unsatisfactory nature of previously described model systems, we have selected, cloned, and characterized a mutant mouse T cell lymphoma (S49) completely deficient in PNPase. Of the four substrates of PNPase, only deoxyguanosine at low concentrations is toxic to the PNPase-deficient (NSU-1) cells. In order to delineate the biochemical processes necessary for the sensitivity of the NSU-1 cells to deoxyguanosine, we have isolated a series of secondary mutants resistant to deoxyguanosine from the PNPase-deficient line. One of these mutants is defective in its ability to transport deoxyguanosine into the cell. A second type of mutant cannot phosphorylate the deoxyguanosine and is totally deficient in deoxycytidine kinase activity. A third type of mutant (NSU-1-dGuo-L) can both transport and phosphorylate deoxyguanosine and accumulates dGTP. However, unlike its parent, NSU-1-dGuo-L does not become depleted of dCTP and TTP when exposed to exogenous deoxyguanosine. This observation is accounted for by the fact that the reduction of CDP to dCDP by the ribonucleotide reductase (ribonucleoside-diphosphate reductase, 2'-deoxyribonucleoside-diphosphate:oxidized-thioredoxin 2'-oxidoreductase, EC 1.17.4.1) of NSU-1-dGuo-L cells is not normally sensitive to feedback inhibition by dGTP.Thus, in order to exert its toxicity deoxyguanosine must be transported into the cell, be phosphorylated by deoxycytidine kinase, and be accumulated as dGTP. By inhibiting ribonucleotide reductase, dGTP depletes the cell of dCTP and to some extent TTP, thus preventing the synthesis of DNA, a process necessary for any proliferation-dependent function of T cells.  (+info)

Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. (36/935)

We have used an enzyme-based, twin-barrelled sensor to measure adenosine release during hypoxia in the CA1 region of rat hippocampal slices in conjunction with simultaneous extracellular field recordings of excitatory synaptic transmission. When loaded with a combination of adenosine deaminase, nucleoside phosphorylase and xanthine oxidase, the sensor responded linearly to exogenous adenosine over the concentration range 10 nM to 20 microM. Without enzymes, the sensor when placed on the surface of hippocampal slices recorded a very small net signal during hypoxia of 40 +/- 43 pA (mean +/- s.e.m.; n = 7). Only when one barrel was loaded with the complete sequence of enzymes and the other with the last two in the cascade did the sensor record a large net difference signal during hypoxia (1226 +/- 423 pA; n = 7). This signal increased progressively during the hypoxic episode, scaled with the hypoxic depression of the simultaneously recorded field excitatory postsynaptic potential and was greatly reduced (67 +/- 6.5 %; n = 9) by coformycin (0.5-2 microM), a selective inhibitor of adenosine deaminase, the first enzyme in the enzymic cascade within the sensor. For 5 min hypoxic episodes, the sensor recorded a peak concentration of adenosine of 5.6 +/- 1.2 microM (n = 16) with an IC(50) for the depression of transmission of approximately 3 microM. In slices pre-incubated for 3-6 h in nominally Ca(2+)-free artificial cerebrospinal fluid, 5 min of hypoxia resulted in an approximately 9-fold greater release of adenosine (48.9 +/- 17.7 microM; n = 6). High extracellular Ca(2+) (4 mM) both reduced the adenosine signal recorded by the sensor during hypoxia (3.5 +/- 0.6 microM; n = 4) and delayed the hypoxic depression of excitatory synaptic transmission.  (+info)

Identification of an alternative nucleoside triphosphate: 5'-deoxyadenosylcobinamide phosphate nucleotidyltransferase in Methanobacterium thermoautotrophicum delta H. (37/935)

Computer analysis of the archaeal genome databases failed to identify orthologues of all of the bacterial cobamide biosynthetic enzymes. Of particular interest was the lack of an orthologue of the bifunctional nucleoside triphosphate (NTP):5'-deoxyadenosylcobinamide kinase/GTP:adenosylcobinamide-phosphate guanylyltransferase enzyme (CobU in Salmonella enterica). This paper reports the identification of an archaeal gene encoding a new nucleotidyltransferase, which is proposed to be the nonorthologous replacement of the S. enterica cobU gene. The gene encoding this nucleotidyltransferase was identified using comparative genome analysis of the sequenced archaeal genomes. Orthologues of the gene encoding this activity are limited at present to members of the domain Archaea. The corresponding ORF open reading frame from Methanobacterium thermoautotrophicum Delta H (MTH1152; referred to as cobY) was amplified and cloned, and the CobY protein was expressed and purified from Escherichia coli as a hexahistidine-tagged fusion protein. This enzyme had GTP:adenosylcobinamide-phosphate guanylyltransferase activity but did not have the NTP:AdoCbi kinase activity associated with the CobU enzyme of S. enterica. NTP:adenosylcobinamide kinase activity was not detected in M. thermoautotrophicum Delta H cell extract, suggesting that this organism may not have this activity. The cobY gene complemented a cobU mutant of S. enterica grown under anaerobic conditions where growth of the cell depended on de novo adenosylcobalamin biosynthesis. cobY, however, failed to restore adenosylcobalamin biosynthesis in cobU mutants grown under aerobic conditions where de novo synthesis of this coenzyme was blocked, and growth of the cell depended on the assimilation of exogenous cobinamide. These data strongly support the proposal that the relevant cobinamide intermediates during de novo adenosylcobalamin biosynthesis are adenosylcobinamide-phosphate and adenosylcobinamide-GDP, not adenosylcobinamide. Therefore, NTP:adenosylcobinamide kinase activity is not required for de novo cobamide biosynthesis.  (+info)

Uptake of adenosine 5'-monophosphate by Escherichia coli. (38/935)

Adenosine 5'-monophosphate is dephosphorylated before its uptake by cells of Escherichia coli. This is demonstrated by using a radioactive double-labeled culture, and with a 5'-nucleotidase-deficient, mutant strain. The adenosine formed is further phosphorolyzed to adenine as a prerequisite for its uptake and incorporation. The cellular localization of the enzymes involved in the catabolism of adenosine 5'-monophosphate is discussed.  (+info)

Genetic analysis of thymidine-resistant and low-thymine-requiring mutants of Escherichia coli K-12 induced by bacteriophage Mu-1. (39/935)

Four genes, dra, tpp, drm, and pup, that specify enzymes involved in the catabolism of nucleosides and deoxynucleosides in Escherichia coli are known to be very closely linked in the order dra-tpp-drm-pup. By infecting cells with the phage Mu-1 and isolating low-thymine-requiring derivatives of a strain lacking thymidylate synthetase and also thymidine-resistant mutants of a dra-strain, it has been possible to select for strains in which Mu-1 is inserted in this gene cluster. Making use of the polar effect of Mu-induced mutations on more distal genes in the same transcriptional unit, evidence is presented that dra and tpp are co-transcribed from a promoter to the left of dra, and drm and pup are co-transcribed from a promotor located between tpp and drm. Residual levels of purine nucleoside phosphorylase in drm- mutants induced by phage Mu seem to indicate that a weak promotor lies between drm and pup. From a strain in which Mu-1 is inserted in drm, a mutant has been isolated that has a deletion extending into tpp. Since this strain lacks thymidylate synthetase, it is unable to grow on minimal medium containing thymine. Mutants isolated from this strain that can grow on minimal medium containing thymine have been shown to have increased levels of the enzyme uridine phosphorylase.  (+info)

Genetic modification of substrate specificity of hypoxanthine phosphoribosyltransferase in Salmonella typhimurium. (40/935)

Salmonella typhimurium strain GP660 (proAB-gpt deletion, purE) lacks guanine phosphoribosyltransferase and hence cannot utilize guanine as a purine source and is resistant to inhibition by 8-azaguanine. Strain GP660 was mutagenized and a derivative strain (GP36) was isolated for utilization of guanine and hypoxanthine, but not xanthine, as purine sources. This alteration was designated sug. The strain was then sensitive to inhibition by 8-azaguanine. Column chromatographic analysis revealed the altered phosphoribosyltransferase peaks for both hypoxanthine and guanine to be located together, in the same position as hypoxanthine phosphoribosyltransferase (hpt gene product) of the wild-type strain. Genetic analysis showed the sug mutation to be allelic with hpt. Therefore sug represented a modification of the substrate specificity of the hpt gene product.  (+info)