Sensitization to king scallop (Pectin maximus) and queen scallop (Chlamys opercularis) proteins. (1/66)

OBJECTIVE: To report a case of occupational asthma and urticaria due to the queen scallop (Chlamys opercularis) and king scallop (Pectin maximus). BACKGROUND: A 40-year-old female worked in a shellfish-processing plant, handling king and queen scallops for 5 years. At the time of investigation, she described a 2-year history of work-related respiratory symptoms. METHODS: Serial peak expiratory flow rate readings were recorded and an OASYS study completed. A workplace visit was undertaken and specific immunoglobulin (IgE) radioallergosorbent (RAST) testing of scallop extracts was performed. RESULTS: The OASYS study was consistent with occupational asthma. RAST testing demonstrated evidence of specific sensitization (IgE) to queen and king scallop. There was also some cross-reactivity observed with other shellfish (prawns and crabs). CONCLUSION: Workers exposed to aerosols from scallop species are at risk of occupational asthma and require effective respiratory health surveillance.  (+info)

Reducing effect of feeding powdered scallop shell on the body fat mass of rats. (2/66)

The lipolytic effect of powdered scallop shells was estimated in vitro and in vivo. The scallop shells consisted of 98% calcium carbonate and 2% organic compounds, the extracted organic components promoted lipolysis in 3T3-L1 adipocyte cells. Male Wistar rats were fed on an experimental diet containing either the scallop shell powder or calcium carbonate (control) for 28 d. Feeding the scallop shell powder resulted in a decrease in body weight and in the weight of white adipose tissue. While the organ weights of the liver, kidney, testis, pancreas, and spleen, and of the brown adipose tissue relative to the body weight were no different between the scallop shell powder diet and control diet, the white adipose tissue weight relative to the body weight significantly decreased in the rats fed on the scallop shell powder. The glycerol concentration in the serum increased in the rats fed on the scallop shell powder, suggesting that this promoted lipolysis in the adipose tissue. These results show that the organic components in the scallop shells induced the decrease in weight of the adipose tissue due to the promotion of lipolysis.  (+info)

Hepatoprotective effect of a hot-water extract from the edible thorny oyster Spondylus varius on carbon tetrachloride-induced liver injury in mice. (3/66)

The edible thorny oyster, Spondylus varius (Mizuiri-shoujou), was found to suppress the carbon tetrachloride-induced increase in serum aspartate and alanine aminotransferase activities in mice. Significant suppressive effects on these enzyme activities were found in the fraction eluted with 75% ethanol from polystyrene gel in a dose-dependent manner. These results suggest that S. varius exerts a protective effect against liver injury.  (+info)

Generation of high-affinity chicken single-chain Fv antibody fragments for measurement of the Pseudonitzschia pungens toxin domoic acid. (4/66)

Antibody-based assay systems are now accepted by regulatory authorities for detection of the toxins produced by phytoplankton that accumulate in shellfish tissues. However, the generation of suitable antibodies for sensitive assay development remains a major challenge. We have examined the potential of using the chicken immune system to generate high-affinity, high-specificity recombinant antibody fragments against phytotoxins. Following immunization of the chicken with domoic acid-bovine serum albumin, a single-chain antibody variable region (scFv) gene library was generated from single V(H) and V(L) genes isolated from the immune cells in the spleen and bone marrow. scFvs reacting with domoic acid were isolated by phage display and affinity matured by light chain shuffling, resulting in an approximate 10-fold increase in sensitivity. The isolated scFvs were effectively expressed in Escherichia coli and readily purified by affinity chromatography. They were then used to develop a convenient and sensitive indirect competitive enzyme-linked immunosorbent assay for domoic acid, with a 50% effective dose of 156 ng/ml, which could be used reliably with shellfish extracts. This study demonstrates that chickens provide a valuable model system for the simplified, rapid generation of high-affinity recombinant antibody fragments with specificity for small toxin molecules.  (+info)

Application of the iterative helical real-space reconstruction method to large membranous tubular crystals of P-type ATPases. (5/66)

Since the development of three-dimensional helical reconstruction methods in the 1960's, advances in Fourier-Bessel methods have facilitated structure determination to near-atomic resolution. A recently developed iterative helical real-space reconstruction (IHRSR) method provides an alternative that uses single-particle analysis in conjunction with the imposition of helical symmetry. In this work, we have adapted the IHRSR algorithm to work with frozen-hydrated tubular crystals of P-type ATPases. In particular, we have implemented layer-line filtering to improve the signal-to-noise ratio, Wiener-filtering to compensate for the contrast transfer function, solvent flattening to improve reference reconstructions, out-of-plane tilt compensation to deal with flexibility in three dimensions, systematic calculation of Fourier shell correlations to track the progress of the refinement, and tools to control parameters as the refinement progresses. We have tested this procedure on datasets from Na(+)/K(+)-ATPase, rabbit skeletal Ca(2+)-ATPase and scallop Ca(2+)-ATPase in order to evaluate the potential for sub-nanometer resolution as well as the robustness in the presence of disorder. We found that Fourier-Bessel methods perform better for well-ordered samples of skeletal Ca(2+)-ATPase and Na(+)/K(+)-ATPase, although improvements to IHRSR are discussed that should reduce this disparity. On the other hand, IHRSR was very effective for scallop Ca(2+)-ATPase, which was too disordered to analyze by Fourier-Bessel methods.  (+info)

Jet propulsion in the cold: Mechanics of swimming in the Antarctic scallop Adamussium colbecki. (6/66)

Unlike most bivalves, scallops are able to swim, relying on a shell with reduced mass and streamlined proportions, a large fast-twitch adductor muscle and the elastic characteristics of the shell's hinge. Despite these adaptations, swimming in scallops is never far from failure, and it is surprising to find a swimming scallop in Antarctica, where low temperature increases the viscosity of seawater, decreases the power output of the adductor muscle and potentially compromises the energy storage capability of the hinge material (abductin, a protein rubber). How does the Antarctic scallop, Adamussium colbecki, cope with the cold? Its shell mass is substantially reduced relative to that of temperate and tropical scallops, but this potential advantage is more than offset by a drastic reduction in adductor-muscle mass. By contrast, A. colbecki's abductin maintains a higher resilience at low temperatures than does the abductin of a temperate scallop. This resilience may help to compensate for reduced muscle mass, assisting the Antarctic scallop to maintain its marginal swimming ability. However, theory suggests that this assistance should be slight, so the adaptive value of increased resilience remains open to question. The high resilience of A. colbecki abductin at low temperatures may be of interest to materials engineers.  (+info)

Feeding scallop shell powder induces the expression of uncoupling protein 1 (UCP1) in white adipose tissue of rats. (7/66)

Previously we found that the organic components in scallop shell promote lipolysis in differentiated 3T3-L1 and C3H10T1/2 adipocyte cells, and that incorporating scallop shell powder into the diet of rats reduced the amount of white adipose tissue. In this study, we used RT-PCR to investigate the effect of ingesting scallop shell powder on the gene expression profile of uncoupling proteins (UCPs) regulating energy metabolism in rats. Feeding of scallop shell powder increased mRNA levels of UCP1 and UCP2 in white adipose tissue. By contrast, scallop shell powder had no effect on the expression of UCP1 in brown adipose tissue, although the expression level of UCP2 mRNA decreased significantly. These results suggest that feeding scallop shell powder increases gene expression of UCP1 that may regulate energy metabolism in white adipose tissue, resulting in the observed reduction in weight of white adipose tissue.  (+info)

1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. (8/66)

RSFPs (reversibly switchable fluorescent proteins) may be repeatedly converted between a fluorescent and a non-fluorescent state by irradiation and have attracted widespread interest for many new applications. The RSFP Dronpa may be switched with blue light from a fluorescent state into a non-fluorescent state, and back again with UV light. To obtain insight into the underlying molecular mechanism of this switching, we have determined the crystal structure of the fluorescent equilibrium state of Dronpa. Its bicyclic chromophore is formed spontaneously from the Cys62-Tyr63-Gly64 tripeptide. In the fluorescent state, it adopts a slightly non-coplanar cis conformation within the interior of a typical GFP (green fluorescent protein) b-can fold. Dronpa shares some structural features with asFP595, another RSFP whose chromophore has previously been demonstrated to undergo a cis-trans isomerization upon photoswitching. Based on the structural comparison with asFP595, we have generated new Dronpa variants with an up to more than 1000-fold accelerated switching behaviour. The mutations which were introduced at position Val157 or Met159 apparently reduce the steric hindrance for a cis-trans isomerization of the chromophore, thus lowering the energy barrier for the blue light-driven on-to-off transition. The findings reported in the present study support the view that a cis-trans isomerization is one of the key events common to the switching mechanism in RSFPs.  (+info)