An introduction to DNA chips: principles, technology, applications and analysis. (17/276)

This review describes the recently developed GeneChip technology that provides efficient access to genetic information using miniaturised, high-density arrays of DNA or oligonucleotide probes. Such microarrays are powerful tools to study the molecular basis of interactions on a scale that would be impossible using conventional analysis. The recent development of the microarray technology has greatly accelerated the investigation of gene regulation. Arrays are mostly used to identify which genes are turned on or off in a cell or tissue, and also to evaluate the extent of a gene's expression under various conditions. Indeed, this technology has been successfully applied to investigate simultaneous expression of many thousands of genes and to the detection of mutations or polymorphisms, as well as for their mapping and sequencing.  (+info)

Protecting subjects' interests in genetics research. (18/276)

Biomedical researchers often assume that sponsors, subjects, families, and disease-associated advocacy groups contribute to research solely because of altruism. This view fails to capture the diverse interests of many participants in the emerging research enterprise. In the past two decades, patient groups have become increasingly active in the promotion and facilitation of genetics research. Simultaneously, a significant shift of academic biomedical science toward commercialization has occurred, spurred by U.S. federal policy changes. The concurrent rise in both the roles that subjects play and the commercial interests they have presents numerous ethical challenges. We examine the interests of different research participants, finding that these interests are not addressed by current policies and practices. We conclude that all participants should be given a voice in decisions affecting ownership, access to, and use of commercialized products and services, and that researchers and institutions should negotiate issues relating to control of research results and the sharing of benefits before the research is performed.  (+info)

Cigarettes with defective filters marketed for 40 years: what Philip Morris never told smokers. (19/276)

BACKGROUND: More than 90% of the cigarettes sold worldwide have a filter. Nearly all filters consist of a rod of numerous ( > 12 000) plastic-like cellulose acetate fibres. During high speed cigarette manufacturing procedures, fragments of cellulose acetate that form the mouthpiece of a filter rod become separated from the filter at the end face. The cut surface of the filter of nearly all cigarettes has these fragments. In smoking a cigarette in the usual manner, some of these fragments are released during puffing. In addition to the cellulose acetate fragments, carbon particles are released also from some cigarette brands that have a charcoal filter. Cigarettes with filters that release cellulose acetate or carbon particles during normal smoking conditions are defective. OBJECTIVE: Specific goals were to review systematically the writings of tobacco companies to: (a) identify papers that would document the existence of defective filters; (b) characterise the extent of the defect; (c) establish when the defect became known; (d) determine whether the defect exists on cigarettes marketed currently; (e) assess the prevalence of the defect on cigarettes manufactured by different companies; (f) define whether the knowledge of the defect had been withheld by the tobacco company as confidential and not disclosed publicly; and (g) ascertain the feasibility of correcting or preventing the defect. METHODS: Document searches utilised databases of the scientific literature, medical journals, chemical abstracts, US Patents, Tobacco Abstracts, papers presented at tobacco meetings and court documents. RESULTS: Sixty one documents of Philip Morris, Inc were selected for study because they disclosed specifically the "fall-out" of cellulose acetate filter fibres and, for cigarettes with charcoal filters, carbon particles from cigarette filters. The term "fall-out" was defined in 1985 laboratory protocols of Philip Morris, Inc. as "loose fibers (or particles) that are drawn out of the filter during puffing of the cigarette". As early as 1957, the health concern of inhaling cellulose acetate fibres released from cigarette filters was addressed by Philip Morris, Inc. A 1962 document reported the results of laboratory tests conducted by Phillip Morris, Inc that compared the "fall-out" of cellulose acetate fibres from the filters of their cigarettes (Marlboro) and cigarettes of their competitor (Liggett & Meyers). A 1997 overview by Phillip Morris of documents addressing the "fallout of carbon particles and cellulose acetate fibers from filters" stated that they were "essentially routine reports" of cigarette filter assays, and referenced a "Filter Fallout" memo written in 1961-more than 40 years ago. Most likely these tests are being conducted presently as illustrated by a 1999 report that details the revisions of the "fall-out" protocol of Phillip Morris, Inc and reports the results of tests that measured the discharge of cellulose acetate fibres and silica gel from beta cigarettes with a new type of filter. Our analysis of the "fall-out" tests results presented in the 61 "fall-out" documents showed that filter fibres and carbon particles were discharged from the filters of all types of cigarettes tested. These cigarette types (n = 130) included both coded cigarettes and popular brand name cigarettes. No publications were found in the scientific literature of the "fall-out" studies. Thus, the results of the "fall-out" studies are thought to have been withheld as confidential to Philip Morris, Inc. We have identified also other companies that have tested recently cigarettes for defective filters. In addition, our searches have shown that simple, expedient, and inexpensive technologies for decontaminating cigarette filters of loose cellulose acetate fibres and particles from the cut surface of the filter have been developed and described in 1997 and 1998 US patents. What is more important is that these patents also define methods for preventing or reducing the broken plastic-like fibres that arise during cigarette making. Many US patents (n = 607; 1957 to 2001) have been awarded for cigarette filters. Some of these inventions describe novel materials and unique filtration schemes that would eliminate or minimise the discharge of filter materials into mainstream smoke. CONCLUSIONS: We have shown that: (a) the filter of today's cigarette is defective; (b) Philip Morris, Inc has known of this filter defect for more than 40 years; (c) the existence of this filter defect has been confirmed by others in independent studies; (d) many methods exist to prevent and correct the filter defect, but have not been implemented; and (e) results of investigations substantiating defective filters have been concealed from the smoker and the health community. The tobacco industry has been negligent in not performing toxicological examinations and other studies to assess the human health risks associated with regularly ingesting and inhaling non-degradable, toxin coated cellulose acetate fragments and carbon microparticles and possibly other components that are released from conventional cigarette filters during normal smoking. The rationale for harm assessment is supported by the results of consumer surveys that have shown that the ingestion or inhalation of cigarette filter fibres are a health concern to nearly all smokers.  (+info)

Research-tool patents: issues for health in the developing world. (20/276)

The patent system is now reaching into the tools of medical research, including gene sequences themselves. Many of the new patents can potentially preempt large areas of medical research and lay down legal barriers to the development of a broad category of products. Researchers must therefore consider redesigning their research to avoid use of patented techniques, or expending the effort to obtain licences from those who hold the patents. Even if total licence fees can be kept low, there are enormous negotiation costs, and one "hold-out" may be enough to lead to project cancellation. This is making it more difficult to conduct research within the developed world, and poses important questions for the future of medical research for the benefit of the developing world. Probably the most important implication for health in the developing world is the possible general slowing down and complication of medical research. To the extent that these patents do slow down research, they weaken the contribution of the global research community to the creation and application of medical technology for the benefit of developing nations. The patents may also complicate the granting of concessional prices to developing nations - for pharmaceutical firms that seek to offer a concessional price may have to negotiate arrangements with research-tool firms, which may lose royalties as a result. Three kinds of response are plausible. One is to develop a broad or global licence to permit the patented technologies to be used for important applications in the developing world. The second is to change technical patent law doctrines. Such changes could be implemented in developed and developing nations and could be quite helpful while remaining consistent with TRIPS. The third is to negotiate specific licence arrangements, under which specific research tools are used on an agreed basis for specific applications. These negotiations are difficult and expensive, requiring both scientific and legal skills. But they will be an unavoidable part of international medical research.  (+info)

Patentees research and development expenditure in Canada. (21/276)

PURPOSE: Many industries are affected by the stale global economy recently. However, the innovative pharmaceutical and biotechnology industry seems to be relentlessly producing a wealth of newer therapeutic products to meet the increasing demand of the aging population. These companies" abilities to produce safer and more effective products are the results of research and development (R&D) spending. Clearly, by investigating R&D expenditures of patentees, one can paint a better picture of the condition in this sector of the Canadian economy. METHODS: To track patentees R&D expenditures, the Patented Medicine Prices Review Board (PMPRB) annual reports have become the primary sources of data. Furthermore, the financial market and the Therapeutic Directorate Annual Drug Submission Performance Report have also been used to address some of the patterns that are seen in PMPRB data. RESULTS: Most of the data suggest excellent growth in the innovative pharmaceutical and biotechnology sector in Canada. Despite this growth, it still lags behind the demand of newer therapeutic products. Nevertheless, the industry can weather a volatile economy well. CONCLUSIONS: Patentees R&D expenditure is a good indicator of the health in the industry. It provides a perspective not only within Canada itself, but also globally.  (+info)

New thinking on gene patents. (22/276)

With the number of patent claims including DNA sequence booming, is there a way forward to help resolve disagreements over the many issues involved? One ethical body believes that there is and has produced a new study.  (+info)

Patents and innovation in cancer therapeutics: lessons from CellPro. (23/276)

This article discusses the interaction between intellectual property and cancer treatment. CellPro developed a stem cell separation technology based on research at the Fred Hutchinson Cancer Center. A patent with broad claims to bone marrow stem cell antibodies had been awarded to Johns Hopkins University and licensed to Baxter Healthcare under the 1980 Bayh-Dole Act to promote commercial use of inventions from federally funded research. CellPro got FDA approval more than two years before Baxter but lost patent infringement litigation. NIH elected not to compel Hopkins to license its patents to CellPro. CellPro went out of business, selling its technology to its competitor. Decisions at both firms and university licensing offices, and policies at the Patent and Trademark Office, NIH, and the courts influenced the outcome.  (+info)

Effects of patents and licenses on the provision of clinical genetic testing services. (24/276)

The growth of patents that include genetic sequences has been accompanied by concern about their impact on the ability of physicians to provide clinical genetic testing services and to perform research. Therefore, we conducted a survey of clinical laboratory directors that perform DNA-based genetic tests to examine potential effects. We performed a telephone survey between July and September in 2001 of all laboratory directors in the United States who were members of the Association for Molecular Pathology or who were listed on the GENETESTS:org website. One hundred thirty-two of 211 (63%) laboratory directors were interviewed. Ten of these were excluded because they did not conduct DNA-based genetic tests. Almost all performed genetic tests for clinical purposes. Half performed tests for research purposes as well. Twenty-five percent of respondents reported that they had stopped performing a clinical genetic test because of a patent or license. Fifty-three percent of respondents reported deciding not to develop a new clinical genetic test because of a patent or license. In total, respondents were prevented from performing 12 genetic tests, and all of these tests were among those performed by a large number of laboratories. We found 22 patents that were relevant to the performance of these 12 tests. Fifteen of the 22 patents (68%) are held by universities or research institutes, and 13 of the 22 patents (59%) were based on research funded by the United States Government. Overall, respondents reported that their perceptions of the effects of patents on the cost, access, and development of genetic tests, or data sharing among researchers, were negative. In contrast, most respondents felt that patents did not have an effect on the quality of testing. We conclude that patents and licenses have had a significant effect on the ability of clinical laboratories to develop and provide genetic tests. Furthermore, our findings suggest that clinical geneticists feel that their research is inhibited by patents. The effects of patents and licenses on patients' access to tests, and the costs and quality thereof, remains to be determined.  (+info)