Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. (65/18215)

1. We have studied the modulation of volume-regulated anion channels (VRACs) by the small GTPase Rho and by one of its targets, Rho kinase, in calf pulmonary artery endothelial (CPAE) cells. 2. RT-PCR and immunoblot analysis showed that both RhoA and Rho kinase are expressed in CPAE cells. 3. ICl,swell, the chloride current through VRACs, was activated by challenging CPAE cells with a 25 % hypotonic extracellular solution (HTS) or by intracellular perfusion with a pipette solution containing 100 microM GTPgammaS. 4. Pretreatment of CPAE cells with the Clostridium C2IN-C3 fusion toxin, which inactivates Rho by ADP ribosylation, significantly impaired the activation of ICl,swell in response to the HTS. The current density at +100 mV was 49 +/- 13 pA pF-1 (n = 17) in pretreated cells compared with 172 +/- 17 pA pF-1 (n = 21) in control cells. 5. The volume-independent activation of ICl,swell by intracellular perfusion with GTPgammaS was also impaired in C2IN-C3-pretreated cells (31 +/- 7 pA pF-1, n = 11) compared with non-treated cells (132 +/- 21 pA pF-1, n = 15). 6. Activation of ICl,swell was pertussis toxin (PTX) insensitive. 7. Y-27632, a blocker of Rho kinase, inhibited ICl,swell and delayed its activation. 8. Inhibition of Rho and of Rho kinase by the above-described treatments did not affect the extent of cell swelling in response to HTS. 9. These experiments provide strong evidence that the Rho-Rho kinase pathway is involved in the VRAC activation cascade.  (+info)

Functional and molecular characterization of a volume-sensitive chloride current in rat brain endothelial cells. (66/18215)

1. Volume-activated chloride currents in cultured rat brain endothelial cells were investigated on a functional level using the whole-cell voltage-clamp technique and on a molecular level using the reverse transcriptase-polymerase chain reaction (RT-PCR). 2. Exposure to a hypotonic solution caused the activation of a large, outward rectifying current, which exhibited a slight time-dependent decrease at strong depolarizing potentials. The anion permeability of the induced current was I- (1.7) > Br- (1.2) > Cl- (1.0) > F- (0. 7) > gluconate (0.18). 3. The chloride channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB, 100 microM) rapidly and reversibly inhibited both inward and outward currents. The chloride transport blocker 4,4'-diisothiocyanatostilbene-2, 2'-disulphonic acid (DIDS, 100 microM) also blocked the hypotonicity-induced current in a reversible manner. In this case, the outward current was more effectively suppressed than the inward current. The volume-activated current was also inhibited by the antioestrogen tamoxifen (10 microM). 4. The current was dependent on intracellular ATP and independent of intracellular Ca2+. 5. Activation of protein kinase C by phorbol 12,13-dibutyrate (PDBu, 100 nM) inhibited the increase in current normally observed following hypotonic challenge. 6. Extracellular ATP (10 mM) inhibited the current with a more pronounced effect on the outward than the inward current. 7. Verapamil (100 microM) decreased both the inward and the outward hypotonicity-activated chloride current. 8. RT-PCR analysis was used to determine possible molecular candidates for the volume-sensitive current. Expression of the ClC-2, ClC-3 and ClC-5 chloride channels, as well as pICln, could be shown at the mRNA level. 9. We conclude that rat brain endothelial cells express chloride channels which are activated by osmotic swelling. The biophysical and pharmacological properties of the current show strong similarities to those of ClC-3 channel currents as described in other cell types.  (+info)

Sympathetic neuroeffector transmission in the rat anococcygeus muscle. (67/18215)

1. When intracellular recordings were made from preparations of rat anococcygeus muscle, transmural nerve stimulation evoked noradrenergic excitatory junction potentials (EJPs) made up of two distinct components. Both components were abolished by either guanethidine or alpha-adrenoceptor antagonists, indicating that they resulted from the release of transmitter from sympathetic nerves and the subsequent activation of alpha-adrenoceptors. 2. The first component was associated with a transient increase in the intracellular concentration of calcium ions ([Ca2+]i) and a contraction. Although the second component was often associated with a long lasting increase in [Ca2+]i it was not associated with a contraction unless the second component initiated an action potential. 3. The increase in [Ca2+]i associated with the first component resulted from Ca2+ release from an intracellular store and from entry of Ca2+ through voltage-dependent Ca2+ channels. The increase in [Ca2+]i associated with the second component resulted only from the entry of Ca2+ through L-type Ca2+ channels (CaL channels). The depolarization associated with the initial increase in [Ca2+]i was abolished by reducing the external concentration of chloride ions ([Cl-]o), suggesting that it involved the activation of a Cl- conductance. 4. When the relationships between changes in [Ca2+]i, membrane depolarization and contraction produced by an increasing number of sympathetic nerve stimuli were determined in control, and caffeine- and nifedipine-containing solutions, it was found that an increase in [Ca2+]i recorded in nifedipine produced a larger contraction and larger membrane depolarization than did a similar increase in [Ca2+]i recorded in either control or caffeine-containing solutions. These observations indicate that Ca2+ released from stores more readily triggers contraction and membrane depolarization than does Ca2+ entry via CaL channels.  (+info)

Relationship between L-type Ca2+ current and unitary sarcoplasmic reticulum Ca2+ release events in rat ventricular myocytes. (68/18215)

1. The time courses of Ca2+ current and Ca2+ spark occurrence were determined in single rat ventricular myocytes voltage clamped with patch pipettes containing 0.1 microM fluo-3. Acquisition of line-scan images on a laser scanning confocal microscope was synchronized with measurement of Cd2+-sensitive Ca2+ currents. In most cells, individual Ca2+ sparks were observed by reducing Ca2+ current density with nifedipine (0.1-8 microM). 2. Ca2+ sparks elicited by depolarizing voltage-clamp pulses had a peak [Ca2+] amplitude of 289 +/- 3 nM with a decay half-time of 20.8 +/- 0.2 ms and a full width at half-maximum of 1.40 +/- 0.03 microm (mean +/- s. e.m., n = 345), independent of the membrane potential. 3. The time between the beginning of a depolarization and the initiation of each Ca2+ spark was calculated and data were pooled to construct waiting time histograms. Exponential functions were fitted to these histograms and to the decaying phase of the Ca2+ current. This analysis showed that the time constants describing Ca2+ current and Ca2+ spark occurrence at membrane potentials between -30 mV and +30 mV were not significantly different. At +50 mV, in the absence of nifedipine, the time constant describing Ca2+ spark occurrence was significantly larger than the time constant of the Ca2+ current. 4. A simple model is developed using Poisson statistics to relate macroscopic Ca2+ current to the opening of single L-type Ca2+ channels at the dyad junction and to the time course of Ca2+ spark occurrence. The model suggests that the time courses of macroscopic Ca2+ current and Ca2+ spark occurrence should be closely related when opening of a single L-type Ca2+ channel initiates a Ca2+ spark. By comparison with the data, the model suggests that Ca2+ sparks are initiated by the opening of a single L-type Ca2+ channel at all membrane potentials encountered during an action potential.  (+info)

Kinetics of inactivation and restoration from inactivation of the L-type calcium current in human myotubes. (69/18215)

1. Inactivation and recovery kinetics of L-type calcium currents were measured in myotubes derived from satellite cells of human skeletal muscle using the whole cell patch clamp technique. 2. The time course of inactivation at potentials above the activation threshold was obtained from the decay of the current during 15 s depolarizing pulses. At subthreshold potentials, prepulses of different durations, followed by +20 mV test pulses, were used. The time course could be well described by single exponential functions of time. The time constant decreased from 17.8 +/- 7.5 s at -30 mV to 1.78 +/- 0.15 s at +50 mV. 3. Restoration from inactivation caused by 15 s depolarization to +20 mV was slowed by depolarization in the restoration interval. The time constant increased from 1.11 +/- 0.17 s at -90 mV to 7.57 +/- 2.54 s at -10 mV. 4. Restoration showed different kinetics depending on the duration of the conditioning depolarization. While the time constant was similar at restoration potentials of -90 and -50 mV after a 1 s conditioning prepulse, it increased with increasing prepulse duration at -50 mV and decreased at -90 mV. 5. The experiments showed that the rates of inactivation and restoration of the L-type calcium current in human myotubes were not identical when observed at the same potential. The results indicate the presence of more than one inactivated state and point to different voltage-dependent pathways for inactivation and restoration.  (+info)

Release of Ca2+ from the sarcoplasmic reticulum increases mitochondrial [Ca2+] in rat pulmonary artery smooth muscle cells. (70/18215)

1. The Ca2+-sensitive fluorescent indicator rhod-2 was used to measure mitochondrial [Ca2+] ([Ca2+]m) in single smooth muscle cells from the rat pulmonary artery, while simultaneously monitoring cytosolic [Ca2+] ([Ca2+]i) with fura-2. 2. Application of caffeine produced an increase in [Ca2+]i and also increased [Ca2+]m. The increase in [Ca2+]m occurred after the increase in [Ca2+]i, and remained elevated for a considerable time after [Ca2+]i had returned to resting values. 3. The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), which causes the mitochondrial membrane potential to collapse, markedly attenuated the increase in [Ca2+]m following caffeine application and also increased the half-time for recovery of [Ca2+]i to resting values. 4. Activation of purinoceptors with ATP also produced increases in both [Ca2+]i and [Ca2+]m in these smooth muscle cells. In some cells, oscillations in [Ca2+]i were observed during ATP application, which produced corresponding oscillations in [Ca2+]m and membrane currents. 5. This study provides direct evidence that Ca2+ release from the sarcoplasmic reticulum, either through ryanodine or inositol 1,4, 5-trisphosphate (InsP3) receptors, increases both cytosolic and mitochondrial [Ca2+] in smooth muscle cells. These results have potential implications both for the role of mitochondria in Ca2+ regulation in smooth muscle, and for understanding how cellular metabolism is regulated.  (+info)

Mitochondrial regulation of the cytosolic Ca2+ concentration and the InsP3-sensitive Ca2+ store in guinea-pig colonic smooth muscle. (71/18215)

1. Mitochondrial regulation of the cytosolic Ca2+ concentration ([Ca2+]c) in guinea-pig single colonic myocytes has been examined, using whole-cell recording, flash photolysis of caged InsP3 and microfluorimetry. 2. Depolarization increased [Ca2+]c and triggered contraction. Resting [Ca2+]c was virtually restored some 4 s after the end of depolarization, a time when the muscle had shortened to 50 % of its fully relaxed length. The muscle then slowly relaxed (t = 17 s). 3. The decline in the Ca2+ transient was monophasic but often undershot or overshot resting levels, depending on resting [Ca2+]c. The extent of the overshoot or undershoot increased with increasing peak [Ca2+]c. 4. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP; 5 microM), which dissipates the mitochondrial proton electrochemical gradient and therefore prevents mitochondrial Ca2+ accumulation, slowed Ca2+ removal at high ( > 300 nM) but not at lower [Ca2+]c and abolished [Ca2+]c overshoots. Oligomycin B (5 microM), which prevents mitchondrial ATP production, affected neither the rate of decline nor the magnitude of the overshoot. 5. During depolarization, the global rhod-2 signal (which represents the mitochondrial matrix Ca2+ concentration, [Ca2+]m) rose slowly in a CCCP-sensitive manner during and for about 3 s after depolarization had ended. [Ca2+]m then slowly decreased over tens of seconds. 6. Inhibition of sarcoplasmic reticulum Ca2+ uptake with thapsigargin (100 nM) reduced the undershoot and increased the overshoot. 7. Flash photolysis of caged InsP3 (20 microM) evoked reproducible increases in [Ca2+]c. CCCP (5 microM) reduced the magnitude of the [Ca2+]c transients evoked by flash photolysis of caged InsP3. Oligomycin B (5 microM) did not reduce the inhibition of the InsP3-induced Ca2+ transient by CCCP thus minimizing the possibility that CCCP lowered ATP levels by reversing the mitochondrial ATP synthase and so reducing SR Ca2+ refilling. 8. While CCCP reduced the magnitude of the InsP3-evoked Ca2+ signal, the internal Ca2+ store content, as assessed by the magnitude of ionomycin-evoked Ca2+ release, did not decrease significantly. 9. [Ca2+]c decline in smooth muscle, following depolarization, may involve mitochondrial Ca2+ uptake. Following InsP3-evoked Ca2+ release, mitochondrial uptake of Ca2+ may regulate the local [Ca2+]c near the InsP3 receptor so maintaining the sensitivity of the InsP3 receptor to release Ca2+ from the SR.  (+info)

The cAMP transduction cascade mediates the PGE2-induced inhibition of potassium currents in rat sensory neurones. (72/18215)

1. The role of the cyclic AMP (cAMP) transduction cascade in mediating the prostaglandin E2 (PGE2)-induced decrease in potassium current (IK) was investigated in isolated embryonic rat sensory neurones using the whole-cell patch-clamp recording technique. 2. Exposure to 100 microM chlorophenylthio-adenosine cyclic 3', 5'-monophosphate (cpt-cAMP) or 1 microM PGE2 caused a slow suppression of the whole-cell IK by 34 and 36 %, respectively (measured after 20 min), without a shift in the voltage dependence of activation for this current. Neither of these agents altered the shape of the voltage-dependent inactivation curve indicating that the suppression of IK did not result from alterations in the inactivation properties. 3. To determine whether the PGE2-mediated suppression of IK depended on activation of the cAMP pathway, cells were exposed to this prostanoid in the presence of the protein kinase A (PKA) inhibitor, PKI. The PGE2-induced suppression of IK was prevented by PKI. In the absence of PGE2, PKI had no significant effect on the magnitude of IK. 4. Results obtained from protocols using different conditioning prepulse voltages indicated that the extent of cpt-cAMP- and PGE2-mediated suppression of IK was independent of the prepulse voltage. The subtraction of control and treated currents revealed that the cpt-cAMP- and PGE2-sensitive currents exhibited little time-dependent inactivation. Taken together, these results suggest that the modulated currents may be delayed rectifier-like IK. 5. Exposure to the inhibitors of IK, tetraethylammonium (TEA) or 4-aminopyridine (4-AP), reduced the control current elicited by a voltage step to +60 mV by 40-50 %. In the presence of 10 mM TEA, treatment with cpt-cAMP did not result in any further inhibition of IK. In contrast, cpt-cAMP reduced IK by an additional 25-30 % in the presence of 1 mM 4-AP. This effect was independent of the conditioning prepulse voltage. 6. These results establish that PGE2 inhibits an outward IK in sensory neurones via activation of PKA and are consistent with the idea that the PGE2-mediated sensitization of sensory neurones results, in part, from an inhibition of delayed rectifier-like IK.  (+info)