Intranasal delivery of recombinant parvovirus-like particles elicits cytotoxic T-cell and neutralizing antibody responses. (1/249)

We previously demonstrated that chimeric porcine parvovirus-like particles (PPV:VLP) carrying heterologous epitopes, when injected intraperitoneally into mice without adjuvant, activate strong CD4(+) and CD8(+) T-cell responses specific for the foreign epitopes. In the present study, we investigated the immunogenicity of PPV:VLP carrying a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus (LCMV) administered by mucosal routes. Mice immunized intranasally with recombinant PPV:VLP, in the absence of adjuvant, developed high levels of PPV-specific immunoglobulin G (IgG) and/or IgA in their serum, as well as in mucosal sites such as the bronchoalveolar and intestinal fluids. Antibodies in sera from mice immunized parenterally or intranasally with PPV:VLP were strongly neutralizing in vitro. Intranasal immunization with PPV:VLP carrying the LCMV CD8(+) T-cell epitope also elicited a strong peptide-specific cytotoxic-T-cell (CTL) response. In contrast, mice orally immunized with recombinant PPV:VLP did not develop any antibody or CTL responses. We also showed that mice primed with PPV:VLP are still able to develop strong CTL responses after subsequent immunization with chimeric PPV:VLP carrying a foreign CD8(+) T-cell epitope. These results highlight the attractive potential of PPV:VLP as a safe, nonreplicating antigen carrier to stimulate systemic and mucosal immunity after nasal administration.  (+info)

Comparative characterization of rep proteins from the helper-dependent adeno-associated virus type 2 and the autonomous goose parvovirus. (2/249)

Adeno-associated viruses (AAVs) are nonautonomous human parvoviruses in that they are dependent on helper functions supplied by other viruses or on genotoxic stimuli for conditions permissive for replication. In the absence of helper, AAV type 2 enters latency by integration into a specific site on human chromosome 19. This feature of AAV, in combination with a lack of pathogenicity, makes AAV an attractive candidate vector for human gene therapy. Goose parvovirus (GPV) is both autonomous and pathogenic yet is highly homologous to AAV. To address the molecular bases for the different viral lifestyles, we compare the AAV and GPV nonstructural proteins, Rep78 and Rep1, respectively. We find that Rep78 and Rep1 possess several biochemical activities in common, including (i) high-affinity DNA binding for sequences that constitute the minimal DNA replication origin; (ii) nucleoside triphosphate-dependent DNA helicase activity; and (iii) origin-specific replication of double-stranded linear DNA. These experiments also establish a specific 38-bp DNA sequence as the minimal GPV DNA replication origin. It is noteworthy that although the proposed Rep binding sites of GPV and AAV are highly similar, Rep1 and Rep78 show a high degree of specificity for their respective origins, in both binding and replication assays. One significant difference was observed; with the minimal replication origin in adenovirus-uninfected extracts, Rep78-mediated replication exhibited low processivity, as previously reported. In contrast, Rep1 efficiently replicated full-length template. Overall, our studies indicate that GPV Rep1 and AAV Rep78 support a comparable mode of replication. Thus, a comparison of the two proteins provides a model system with which to determine the contribution of Rep in the regulation of dependence and autonomy at the level of DNA replication.  (+info)

Infection of apheresis cells by parvovirus B19. (3/249)

Parvovirus B19 is the only member of the Parvoviridae family known to cause disease in humans. Owing to the high level of cell tropism the virus can only replicate in proliferating and differentiating erythroid precursor cells, which are present in human bone marrow and foetal liver. As human bone marrow is very difficult to obtain, an alternative in vitro system for the propagation of B19 virus has been developed, based on the application of mobilized haemapoietic progenitor (apheresis) cells. These cells are routinely harvested from cancer patients after treatment with recombinant human granulocyte/macrophage colony-stimulating factor. Replication of parvovirus B19 in vitro is possible in these cells after stimulation with erythropoietin. Therefore, this system is an easily, accessible alternative to the use of human bone marrow in parvovirus B19 infection assays.  (+info)

SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: identification of common effectors with p53 and p21(Waf1). (4/249)

We have previously described biological model systems for studying tumor suppression in which, by using H-1 parvovirus as a selective agent, cells with a strongly suppressed malignant phenotype (KS or US) were derived from malignant cell lines (K562 or U937). By using cDNA display on the K562/KS cells, 15 cDNAs were now isolated, corresponding to genes differentially regulated in tumor suppression. Of these, TSAP9 corresponds to a TCP-1 chaperonin, TSAP13 to a regulatory proteasome subunit, and TSAP21 to syntaxin 11, a vesicular trafficking molecule. The 15 cDNAs were used as a molecular fingerprint in different tumor-suppression models. We found that a similar pattern of differential regulation is shared by activation of p53, p21(Waf1), and the human homologue of Drosophila seven in absentia, SIAH-1. Because SIAH-1 is differentially expressed in the various models, we characterized it at the protein and functional levels. The 32-kDa, mainly nuclear protein encoded by SIAH-1, can induce apoptosis and promote tumor suppression. These results suggest the existence of a common mechanism of tumor suppression and apoptosis shared by p53, p21(Waf1), and SIAH-1 and involving regulation of the cellular machinery responsible for protein folding, unfolding, and trafficking.  (+info)

Control of parvovirus DNA replication by a tetracycline-regulated repressor. (5/249)

Autonomous parvoviruses are small, single strand DNA viruses which preferentially replicate in transformed and tumor cells, causing cell death by expression of the cytotoxic nonstructural protein, NS1. Several parvoviruses of the rodent group, including LuIII, efficiently infect human transformed cell lines. The potential for systemic use of these viruses in targeting metastases might be enhanced if NS1 expression and viral replication could be controlled by an innocuous drug such as tetracycline. We therefore substituted prokaryotic tetracycline operator sequences for part of P4 of LuIII, the promoter responsible for transcription of the mRNAs for nonstructural proteins. The resulting construct unexpectedly showed constitutive expression in transiently transfected cells, as indicated by efficient excision and amplification of viral replicative form (RF) DNA. This was apparently due to self-stimulatory transcriptional transactivation by NS1. This problem was overcome by cotransfection with a plasmid expressing a chimera of the repressor of the tetracycline operon with a KRAB transrepression domain. These conditions allowed efficient control of transcription and RF amplification by the tetracycline derivative, doxycycline. These observations form a basis for developing a therapeutic agent based on a drug-controlled parvovirus.  (+info)

Two new members of the emerging KDWK family of combinatorial transcription modulators bind as a heterodimer to flexibly spaced PuCGPy half-sites. (6/249)

Initially recognized as a HeLa factor essential for parvovirus DNA replication, parvovirus initiation factor (PIF) is a site-specific DNA-binding complex consisting of p96 and p79 subunits. We have cloned and sequenced the human cDNAs encoding each subunit and characterized their products expressed from recombinant baculoviruses. The p96 and p79 polypeptides have 40% amino acid identity, focused particularly within a 94-residue region containing the sequence KDWK. This motif, first described for the Drosophila homeobox activator DEAF-1, identifies an emerging group of metazoan transcriptional modulators. During viral replication, PIF critically regulates the viral nickase, but in the host cell it probably modulates transcription, since each subunit is active in promoter activation assays and the complex binds to previously described regulatory elements in the tyrosine aminotransferase and transferrin receptor promoters. Within its recognition site, PIF binds coordinately to two copies of the tetranucleotide PuCGPy, which, remarkably, can be spaced from 1 to 15 nucleotides apart, a novel flexibility that we suggest may be characteristic of the KDWK family. Such tetranucleotides are common in promoter regions, particularly in activating transcription factor/cyclic AMP response element-binding protein (ATF/CREB) and E-box motifs, suggesting that PIF may modulate the transcription of many genes.  (+info)

Characterization and PCR detection of hepatopancreatic parvovirus (HPV) from Penaeus monodon in Thailand. (7/249)

Hepatopancreatic parvovirus (HPV) causes disease in several species of penaeid shrimp. Heavy infections may result in poor growth and reduced production for shrimp farmers. From one southern Thai shrimp pond with a high prevalence of HPV infection, 790 shrimp were sampled randomly and the hepatopancreas (HP) removed. Most HP were preserved in liquid nitrogen. However, every 10th HP (79 total) was divided into 2 parts appropriately fixed for examination by transmission electron microscopy (TEM) and light microscopy. Based on light microscopy, the prevalence of HPV infection in the pond was approximately 30% and its presence was confirmed by TEM of parallel samples. The virus was subsequently purified from hepatopancreatic homogenates of the samples preserved in liquid nitrogen. Negative staining of the purified viral preparation revealed unenveloped, icosahedral viral particles 22 to 24 nm in diameter. Agarose gel electrophoresis of nucleic acid extracts revealed the presence of 2 fragments, one very intense (5.8 kb) and the other weak (4.2 kb). The larger fragment was degraded by DNase I and S1 nuclease, indicating single-stranded DNA (ssDNA) characteristic of the viral family Parvoviridae. The smaller fragment was degraded by DNase I but not by S1 nuclease, indicating that it comprised double-stranded DNA. A genomic DNA library of the 5.8 kb ssDNA was constructed in pUC18 and a clone containing a 659 bp fragment specific and sensitive for HPV was selected for sequencing. Based on this sequence, an HPV-specific primer set was designed to yield a 156 bp amplicon by polymerase chain reaction (PCR) amplification. The expected 156 bp amplicon was obtained only in the presence of HPV DNA template (at as little as 1 fg purified DNA) and not with nucleic acid templates extracted from healthy shrimp tissue or other shrimp pathogens. It is hoped that this PCR assay will be useful to shrimp aquaculturists for early detection and screening of shrimp larvae, parental broodstock or other possible carriers of HPV in the shrimp cultivation system.  (+info)

Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome. (8/249)

Postweaning multisystemic wasting syndrome (PMWS) is an emerging disease in swine. Recently, the disease has been reproduced with inocula containing a newly described porcine circovirus (PCV), designated PCV 2, and porcine parvovirus (PPV). In order to determine if these viruses interact in naturally acquired PMWS, affected tissues from field cases were examined by immunohistochemistry (IHC) and polymerase chain reaction (PCR) for PCV 2 and PPV, as well as by PCR for the other recognized porcine circovirus, PCV 1. Porcine circovirus 2 was detected by PCR or IHC in affected fixed or frozen tissues from 69 of 69 cases of PMWS collected over 3 years from 25 farms. Porcine parvovirus was detected in 12 of the same cases, and PCV 1 was detected in 9 of 69; however, an apparent decrease was found in the sensitivity of the PCRs used to detect the latter 2 viruses when fixed tissue from the same cases were compared with the use of frozen tissues. Porcine circovirus 2 was not detected by PCR in affected tissues from 16 age-matched pigs that had Streptococcus suis-associated disease. Electron microscopic examination of plasma pooled from 15 pigs with PMWS revealed the presence of PCV and PPV, whereas these viruses were not observed in pooled plasma from 5 age-matched clinically normal pigs. These results confirm and extend previous findings documenting a consistent association of PCV 2 with PMWS. As well, infection by PPV or PCV 1 or both may be an important cofactor in the pathogenesis of some, but apparently not all, cases of PMWS.  (+info)