An epidemiologic study of disease in 32 registered Holstein dairy herds in British Columbia. (1/18)

Data recorded in a herd health management system were obtained from 32 registered Holstein dairy herds from British Columbia. Frequencies of disease were described, and the effect of herd, age, year, season, and the interrelationships between diseases within a lactation on the occurrence of disease were evaluated. Lactational incidence rates were computed for diseases with a short period of risk (ie, udder edema, milk fever, retained placenta, metritis, displaced abomasum, and ketosis), whereas for diseases with a longer period of risk (ie, cystic ovaries, mastitis and stable footrot), incidence densities were calculated. Overall, the disease incidence was low and showed an increase in frequency by year, which we attributed to more observing and complete recording by the owner, rather than an actual increase in disease incidence. Most diseases occurred early in lactation and their frequency increased with lactation number; the exception was udder edema, which occurred mainly during the first 2 lactations. An informal path model of disease interrelationships was made conditional on herd. Based on the results we inferred 2 independent pathways: one started by udder edema, and the other by milk fever. Udder edema was directly associated with mastitis occurrence from 0 to 30 d in lactation, metritis, and cystic ovaries. Mastitis from 0-30 d in lactation increased the risk of both mastitis from 31-150 d in lactation and cystic ovaries. Both of these increased the risk of late lactation mastitis. Milk fever was directly related with displaced abomasum, which increased the risk of footrot. In general, diseases that occurred in early lactation tended to increase the risk of other diseases later in lactation.  (+info)

Reduction in serum lecithin:cholesterol acyltransferase activity prior to the occurrence of ketosis and milk fever in cows. (2/18)

Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for production of cholesteryl esters in plasma. The LCAT activity is reduced in cows with fatty liver developed during the nonlactating stage and those with the fatty liver-related postparturient diseases such as ketosis. The purpose of the present study was to examine whether reduced LCAT activity during the nonlactating stage could be detected before the occurrence of postparturient diseases. Sera from 24 cows were collected at approximately 10-day intervals from -48 to +14 days from parturition. Of the 24 cows, 14 were apparently healthy, whereas 7 had ketosis and 3 had milk fever at around parturition. Of the 14 healthy cows, 7 had unaltered LCAT activity during the observation period, whereas 7 showed reduced activity from -20 to +14 days. Ketosis and milk fever occurred at from -3 to +10 days, but reductions of LCAT activity in diseased cows had already been observed from days -20 to 0. These results suggest that LCAT activity is virtually unaffected during the peripartum period at least in some healthy cows and also that the reduction in LCAT activity can be detected before the occurrence of ketosis and milk fever.  (+info)

Decreased concentration of serum apolipoprotein C-III in cows with fatty liver, ketosis, left displacement of the abomasum, milk fever and retained placenta. (3/18)

Apolipoprotein (apo) C-III is a low molecular mass protein mainly distributed in the high-density lipoprotein (HDL) fraction. In cows with postparturient diseases such as ketosis, concentrations of cholesterol, phospholipids and apoA-I and the activity of lecithin:cholesterol acyltransferase, which are mainly distributed in or functionally associated with HDL, are reduced. The purpose of the present study was to examine whether the serum concentration of apoC-III was similarly decreased in the postparturient diseases. Compared with healthy controls, the apoC-III concentration was significantly (P<0.01) decreased in cows with fatty liver, ketosis, left displacement of the abomasum, milk fever and retained placenta. Concentrations of apoC-III in the HDL fractions from diseased cows were also lower than in controls. Of the diseased cows, the decreased apoC-III concentration was particularly distinct in cows with milk fever. Increased nonesterified fatty acid and reduced free cholesterol, cholesteryl ester and phospholipid concentrations were observed in cows with milk fever, as in the other diseased cows. The decrease in the apoC-III concentration is suggested to be closely associated with the postparturient disorders, in particular with milk fever.  (+info)

Concentrations of apolipoprotein C-III in healthy cows during the peripartum period and cows with milk fever. (4/18)

Apolipoprotein (apo) C-III is a low-molecular-mass protein mainly distributed in the high-density lipoprotein fraction in cattle serum. We have recently shown that the apoC-III concentration is decreased in cows with fatty liver, ketosis, left displacement of the abomasum, retained placenta and milk fever. The decrease was most distinct in milk fever, thereby suggesting that apoC-III is particularly relevant to the development of milk fever and also that apoC-III is a candidate diagnostic marker for this disease. The purpose of the present study was to examine whether the apoC-III concentration in healthy cows is altered during the peripartum period, to assess the usefulness of apoC-III as a marker for milk fever. ApoC-III concentrations in 17 cows were monitored during the peripartum period (-48 to +12 days from parturition). Of the 17 cows, 14 were apparently healthy during the period. The apoC-III concentrations in the 14 healthy cows were unaltered during the period from -48 to -21 days, but thereafter showed individual variations. Compared with values during the period from -48 to -21 days, the apoC-III concentration was increased (137%) in 5 cows during the period from +1 to +12 days, whereas it decreased (60.7%) in 9 cows. Three cows suffered from milk fever at -3 to +10 days. Decreased apoC-III concentrations in diseased cows (15 to 37% of controls) were more distinct than in the 9 healthy cows. The apoC-III concentration was correlated with lecithin:cholesterol acyltransferase activity in cows with milk fever, but not in healthy cows. Correlation analysis also indicated that apoC-III and apoB-100 concentrations were negatively correlated in 5 healthy cows with increased apoC-III concentrations, but positively in 9 healthy cows with decreased concentrations and cows with milk fever. Determination of the apoC-III concentration during the peripartum period is suggested to be helpful in diagnosing milk fever. The possible relevance of apoC-III and apoB-100 in the development of milk fever is also implied.  (+info)

Decreases in serum apolipoprotein B-100 and A-I concentrations in cows with milk fever and downer cows. (5/18)

Milk fever occurring during the peripartum period has been suggested to be caused by fatty liver developed during the non-lactating stage because diseased cows have increased serum concentrations of non-esterified fatty acids (NEFA) and show hepatic lipidosis. In cows with fatty liver and related diseases such as ketosis, serum concentrations of apolipoprotein (apo) B-100 and apoA-I are decreased. The purpose of the present study was to examine whether apoB-100 and apoA-I concentrations are similarly decreased in cows with milk fever. Apolipoprotein concentrations were also measured in cows with downer syndrome, which has been suggested to be related, at least in part, to milk fever. Compared with healthy cows during early lactation, apoB-100 and apoA-I concentrations were decreased in cows with milk fever and also in downer cows. In cows with milk fever, the decreases in apoB-100 and apoA-I concentrations were associated with increased NEFA and decreased cholesterol and phospholipid concentrations. However, in downer cows, serum lipid concentration changes were not as distinct as in cows with milk fever. These results, coupled with previous findings on the decreases in apoB-100 and apoA-I concentrations of cows with fatty liver-related diseases, suggest that fatty liver is involved in the development of milk fever and partly in that of downer cow syndrome.  (+info)

Relevance of apolipoproteins in the development of fatty liver and fatty liver-related peripartum diseases in dairy cows. (6/18)

Most metabolic diseases in dairy cows occur during the peripartum period and are suggested to be derived from fatty liver initially developed during the nonlactating stage. Fatty liver is induced by hepatic uptake of nonesterified fatty acids that are released in excess by adipose tissues attributable to negative energy balance. The fatty accumulation leads to impairment of lipoprotein metabolism in the liver, and the impairment in turn influences other metabolic pathways in extrahepatic tissues such as the steroid hormone production by the corpus luteum. Detailed understanding of the impaired lipoprotein metabolism is crucial for elucidation of the mechanistic bases of the development of fatty liver and fatty liver-related peripartum diseases. This review summarizes results on evaluation of lipoprotein lipid and protein concentrations and enzyme activity in cows with fatty liver and those with ketosis, left displacement of the abomasum, milk fever, downer syndrome and retained placenta. Obtained data strongly suggest that decreases in serum concentrations of apolipoprotein B-100, apolipoprotein A-I and apolipoprotein C-III, a reduction in activity of lecithin:cholesterol acyltransferase and induction of haptoglobin and serum amyloid A are intimately related to the development of fatty liver and fatty liver-related diseases. Moreover, determination of the apolipoprotein concentrations and enzyme activity during the peripartum period is useful for early diagnoses of these diseases.  (+info)

Milk fever control principles: a review. (7/18)

Three main preventive principles against milk fever were evaluated in this literature review, and the efficacy of each principle was estimated from the results of controlled investigations. Oral calcium drenching around calving apparently has a mean efficacy of 50%-60% in terms of milk fever prevention as well as prevention of milk fever relapse after intravenous treatment with calcium solutions. However, some drenches have been shown to cause lesions in the forestomacs. When using the DCAD (dietary cation-anion difference) principle, feeding rations with a negative DCAD (measured as (Na + K)-(Cl + S)) significantly reduce the milk fever incidence. Calculating the relative risk (RR) of developing milk fever from controlled experiments results in a mean RR between 0.19 and 0.35 when rations with a negative versus positive DCAD are compared. The main drawback from the DCAD principle is a palatability problem. The principle of feeding rations low in calcium is highly efficient in milk fever prevention provided the calcium intake in the dry period is kept below 20 g per day. Calculating the relative risk (RR) of developing milk fever from controlled experiments results in a very low mean RR (between 0 and 0.20) (daily calcium intake below versus above 20 g/d). The main problem in implementing the low-Ca principle is difficulties in formulating rations sufficiently low in calcium when using commonly available feeds. The use of large doses of vitamin D metabolites and analogues for milk fever prevention is controversial. Due to toxicity problems and an almost total lack of recent studies on the subject this principle is not described in detail. A few management related issues were discussed briefly, and the following conclusions were made: It is important to supply the periparturient cow with sufficient magnesium to fulfil its needs, and to prevent the dry cows from being too fat. Available information on the influence of carbohydrate intake, and on the effect of the length of the dry period and prepartum milking, is at present insufficient to include these factors in control programmes.  (+info)

Serum activities of tartrate-resistant acid phosphatase and bone specific alkaline phosphatase as indices of bone metabolism in the cow. (8/18)

The correlation between the serum hydroxyproline concentration and serum activity levels of TRAP and BALP was examined in 41 cows. The correlated coefficient (r) was 0.6391 for TRAP and 0.3147 for BALP, respectively. Judging from the significant correlation to the serum hydroxyproline concentration, serum TRAP activity is an index for bone metabolism in cows. Serum TRAP activity was therefore measured in 205 healthy cows (2-9 years old) in order to observe the changes in bone resorption with aging and milk production. TRAP levels differed slightly between group A (< or =4 yrs) and B (5 yrs< or =) at the same stage of lactation. The activity levels rose slightly at the height of lactation stage and during the dry stage.  (+info)