Polymorphism in a cyclic parthenogenetic species: Simocephalus serrulatus. (1/599)

A survey of sixteen isozyme loci using electrophoretic techniques was conducted for three isolated natural populations and one laboratory population of the cyclic parthenogenetic species, Simocephalus serrulatus. The proportion of polymorphic loci (33%-60%) and the average number of heterozygous loci per individual (6%-23%) in the three natural populations were found to be comparable to those found in most sexually reproducing organisms. Detailed analyses were made for one of these populations using five polymorphic loci. The results indicated that (1) seasonal changes in genotypic frequencies took place, (2) apomicitic parthenogenesis does not lead to genetic homogeneity, and (3) marked gametic disequilibrium at these five loci was present in the population, indicating that selection acted on coadapted groups of genes.  (+info)

Bex1, a gene with increased expression in parthenogenetic embryos, is a member of a novel gene family on the mouse X chromosome. (2/599)

Parthenogenetic and normal blastocysts were compared using differential display analysis as a means to identify new imprinted genes. A single gene was identified with increased expression in parthenogenetic blastocysts, suggesting it might be an imprinted gene expressed from the maternally inherited allele. The gene, named Bex1 (brainexpressedX-linked gene), maps near Plp on the mouse X chromosome and to Xq22 in humans. Database homology searches revealed two additional uncharacterized cDNAs similar to Bex1 that were named Bex2 and Bex3. Allele-specific expression analysis of Bex1 using F1 blastocysts indicated an excess of transcript expressed from the maternally inherited allele compared with the paternally inherited allele. This excess level of transcript derived from the maternally inherited allele may be due to imprinted X inactivation of the paternally inherited allele in the extraembryonic lineages of female embryos rather than a result of genomic imprinting.  (+info)

Development of nuclear transfer and parthenogenetic rabbit embryos activated with inositol 1,4,5-trisphosphate. (3/599)

The present study was carried out to evaluate the effects of different activation protocols, enucleation methods, and culture media on the development of parthenogenetic and nuclear transfer (NT) rabbit embryos. Electroporation of 25 mM inositol 1,4, 5-trisphosphate (IP3) in calcium- and magnesium-free PBS immediately induced a single intracellular calcium transient in 6 out of 14 metaphase II-stage rabbit oocytes evaluated during a 10-min recording period. The percentage of oocytes treated with IP3 followed by 6-dimethylaminopurine (IP3 + DMAP) that cleaved (83.9%) and reached the blastocyst stage (50%) was significantly higher (p < 0.05) than those activated with multiple pulses (61.6% and 30.1%, respectively) or treated with ionomycin + DMAP (52.9% and 5.7%, respectively). Development of IP3 + DMAP-activated rabbit oocytes and in vivo-fertilized zygotes in different culture media was studied. Development of activated oocytes to the blastocyst stage in Earle's balanced salt solution (EBSS) supplemented with MEM nonessential amino acids, basal medium Eagle amino acids, 1 mM L-glutamine, 0.4 mM sodium pyruvate, and 10% fetal bovine serum (FBS) (EBSS-complete) (40.6%) was significantly higher (p < 0.05) than those that developed in either Dulbecco's Modified Eagle's medium (DMEM)/RPMI + 10% FBS (15.5%) or CR1aa + 10% FBS (4%) medium. In addition, 100% of in vivo-fertilized rabbit zygotes developed to the blastocyst stage in EBSS-complete. A third set of experiments was carried out to study the efficiency of blind versus stained (Hoechst 33342) enucleation of oocytes. Twenty-nine of 48 blind enucleated and IP3 + DMAP-activated oocytes cleaved (60.4%), and 15 (31.2%) subsequently reached the blastocyst stage, whereas 9 of 52 oocytes enucleated using epifluorescence (17.3%) cleaved, and none of these reached the blastocyst stage. When the above parameters that yielded the highest blastocysts were combined in an NT experiment using adult rabbit fibroblast nuclei, 72.2% (39 of 54) of the fused nuclear transplant embryos cleaved and 29.6% (16 of 54) reached the blastocyst stage.  (+info)

The organization of genetic diversity in the parthenogenetic lizard Cnemidophorus tesselatus. (4/599)

The parthogenetic lizard species Cnemidophorus tesselatus is composed of diploid populations formed by hybridization of the bisexual species C. tigris and C. septemvittatus, and of triploid populations derived from a cross between diploid tesselatus and a third bisexual species, C. sexlineatus. An analysis of allozymic variation in proteins encoded by 21 loci revealed that, primarily because of hybrid origin, individual heterozygosity in tesselatus is much higher (0.560 in diploids and 0.714 in triploids) than in the parental bisexual species (mean, 0.059). All triploid individuals apparently represent a single clone, but 12 diploid clones were identified on the basis of genotypic diversity occurring at six loci. From one to four clones were recorded in each population sampled. Three possible sources of clonal diversity in the diploid parthenogens were identified: mutation at three loci has produced three clones, each confined to a single locality; genotypic diversity at two loci apparently caused by multiple hybridization of the bisexual species accounts for four clones; and the remaining five clones apparently have arisen through recombination at three loci. The relatively limited clonal diversity of tesselatus suggests a recent origin. The evolutionary potential of tesselatus and of parthenogenetic forms in general may be less severely limited than has generally been supposed.  (+info)

Intracellular pH regulation by HCO3-/Cl- exchange is activated during early mouse zygote development. (5/599)

We report here that at least one major pHi-regulatory mechanism, the HCO3-/Cl- exchanger, is quiescent in unfertilized mouse eggs but becomes fully activated during early development following fertilization. Zygotes (8-12 h postfertilization) exhibited a marked intracellular alkalinization upon external Cl- removal, which is indicative of active HCO3-/Cl- exchangers, in contrast to the very small response observed in eggs. In addition, efflux of Cl- from eggs upon external Cl- removal was much slower than that from zygotes, indicating additional pathways for Cl- to cross the plasma membrane in zygotes. Furthermore, while zygotes quickly recovered from an induced alkalosis, eggs exhibited only a slow, incomplete recovery. Following in vitro fertilization (IVF), increased HCO3-/Cl- exchanger activity was first detectable about 4 h postfertilization and reached the maximal level after about 8 h. The upregulation of HCO3-/Cl- exchanger activity after fertilization appeared to occur by activation of existing, inactive exchangers rather than by synthesis or transport of new exchangers, as the increase in activity following IVF was unaffected by inhibition of protein synthesis or by disruption of the Golgi apparatus or the cytoskeleton. This activation may depend on the Ca2+ transients which follow fertilization, as suppression of these transients, using the Ca2+ chelator BAPTA, reduced subsequent upregulation of HCO3-/Cl- exchanger activity by about 50%. Activation of pHi-regulatory systems may be a widespread feature of the earliest period of embryonic development, not restricted to species such as marine invertebrates as previously believed.  (+info)

Evidence for the involvement of a Src-related tyrosine kinase in Xenopus egg activation. (6/599)

Recently, we have purified a Src-related tyrosine kinase, named Xenopus tyrosine kinase (Xyk), from oocytes of Xenopus laevis and found that the enzyme is activated within 1 min following fertilization [Sato et al. (1996) J. Biol. Chem. 271, 13250-13257]. A concomitant translocation of a part of the activated enzyme from the membrane fraction to the cytosolic fraction was also observed. In the present study, we show that parthenogenetic egg activation by a synthetic RGDS peptide [Y. Iwao and T. Fujimura, T. (1996) Dev. Biol. 177, 558-567], an integrin-interacting peptide, but not by electrical shock or the calcium ionophore A23187 causes the kinase activation, tyrosine phosphorylation, and translocation of Xyk. A synthetic tyrosine kinase-specific inhibitor peptide was employed to analyze the importance of the Xyk activity in egg activation. We found that the peptide inhibits the kinase activity of purified Xyk at IC50 of 8 microM. Further, egg activation induced by sperm or RGDS peptide but not by A23187 was inhibited by microinjection of the peptide. In the peptide-microinjected eggs, penetration of the sperm nucleus into the egg cytoplasm and meiotic resumption in the egg were blocked. Indirect immunofluorescence study demonstrates that Xyk is exclusively localized to the cortex of Xenopus eggs, indicating that Xyk can function in close proximity to the sperm-egg or RGDS peptide-egg interaction site. Taken together, these data suggest that the tyrosine kinase Xyk plays an important role in the early events of Xenopus egg activation in a manner independent or upstream of calcium signaling.  (+info)

Experiments on blocking and unblocking of first meiotic metaphase in eggs of the parthenogenetic stick insect Carausius morosus Br. (Phasmida, Insecta). (7/599)

The eggs of the parthenogenetic stick insect Carausius morosus, which remain arrested in first meiotic metaphase until oviposition, must be activated in order to develop. The activating agent is oxygen from the air, which enters the egg cell through the micropyle. An exposure shorter than one minute is sufficient to release the blockage. In non-activated (micropyle-less) eggs the first metaphase chromsomes either degenerate or change into an interphase nucleus. This nucleus polyploidizes by endoreduplication, and then either degenerates or multiplies by amitosis. Similarly more generations of nuclei may arise resulting in a chaotic development. These nuclei survive better in the anterior region of the egg. The question of whether the cytoplasmic factors which control nuclear behaviour, also operate in eggs of C. morosus is discussed.  (+info)

Interplay of maturation-promoting factor and mitogen-activated protein kinase inactivation during metaphase-to-interphase transition of activated bovine oocytes. (8/599)

The objective of the present study was to examine the activity changes in histone H1 kinase (also known as maturation-promoting factor [MPF]) and mitogen-activated protein kinase (MAPK) and their constituent proteins in in vitro-matured bovine oocytes after in vitro fertilization (IVF) or after parthenogenetic activation induced by calcium ionophore A23187 alone or by the ionophore followed by either 6-dimethylaminopurine (6-DMAP) or cycloheximide (CHX). Inactivation of both H1 kinase and MAPK occurred after both A23187+6-DMAP treatment and IVF; inactivation of H1 kinase preceded inactivation of MAPK. However, MAPK was inactivated much earlier in 6-DMAP-treated oocytes. Further analysis of constituent cell cycle proteins of these kinases by Western blot showed that A23187 alone could not induce changes in cdc2, cdc25, or ERK2 but induced reduction of cyclin B1. IVF and A23187+CHX induced similar changes: cyclin B1 was destroyed shortly after activation followed by accumulation of cyclin B1, phosphorylation of cdc2, and dephosphorylation of ERK2 at pronuclear formation 15 h after activation. No change in cdc25 was observed at this time. In contrast, A23187+6-DMAP treatment resulted in earlier phosphorylation of cdc2 and dephosphorylation of ERK2 at 4 h after treatment when the pronucleus formed. Moreover, accumulation of both cdc25 and cyclin B1 was detected at 15 h. Microinjection of ERK2 antibody into A23187-treated oocytes resulted in pronuclear formation. In conclusion, activation of bovine oocytes with 6-DMAP led to earlier inactivation of MAPK, while CHX induced inactivation of MAPK parallel to that following sperm-induced oocyte activation. Destruction of cyclin B is responsible for inactivation of MPF, while phosphorylation of cdc2 is likely responsible for maintaining its low activity. Inactivation of MAPK is closely associated with pronuclear development regardless of the activation protocol used.  (+info)