Loading...
(1/2542) Morphogenesis of callosal arbors in the parietal cortex of hamsters.

The morphogenesis of callosal axons originating in the parietal cortex was studied by anterograde labeling with Phaseolus lectin or biocytin injected in postnatal (P) hamsters aged 7-25 days. Some labeled fibers were serially reconstructed. At P7, some callosal fibers extended as far as the contralateral rhinal fissure, with simple arbors located in the homotopic region of the opposite cortical gray matter, and two or three unbranched sprouts along their trajectory. From P7 to P13, the homotopic arbors became more complex, with branches focused predominantly, but not exclusively, in the supra- and infragranular layers of the homotopic region. Simultaneously, the lateral extension of the trunk axon in the white matter became shorter, finally disappearing by P25. Arbors in the gray matter were either bilaminar (layers 2/3 and 5) or supragranular. A heterotopic projection to the lateral cortex was consistently seen at all ages; the heterotopic arbors follow a similar sequence of events to that seen in homotopic regions. These observations document that callosal axons undergo regressive tangential remodeling during the first postnatal month, as the lateral extension of the trunk fiber gets eliminated. Radially, however, significant arborization occurs in layer-specific locations. The protracted period of morphogenesis suggests a correspondingly long plastic period for this system of cortical fibers.  (+info)

(2/2542) Neuronal activity in somatosensory cortex of monkeys using a precision grip. I. Receptive fields and discharge patterns.

Three adolescent Macaca fascicularis monkeys weighing between 3.5 and 4 kg were trained to use a precision grip to grasp a metal tab mounted on a low friction vertical track and to lift and hold it in a 12- to 25-mm position window for 1 s. The surface texture of the metal tab in contact with the fingers and the weight of the object could be varied. The activity of 386 single cells with cutaneous receptive fields contacting the metal tab were recorded in Brodmann's areas 3b, 1, 2, 5, and 7 of the somatosensory cortex. In this first of a series of papers, we describe three types of discharge pattern, the receptive-field properties, and the anatomic distribution of the neurons. The majority of the receptive fields were cutaneous and covered less than one digit, and a chi2 test did not reveal any significant differences in the Brodmann's areas representing the thumb and index finger. Two broad categories of discharge pattern cells were identified. The first category, dynamic cells, showed a brief increase in activity beginning near grip onset, which quickly subsided despite continued pressure applied to the receptive field. Some of the dynamic neurons responded to both skin indentation and release. The second category, static cells, had higher activity during the stationary holding phase of the task. These static neurons demonstrated varying degrees of sensitivity to rates of pressure change on the skin. The percentage of dynamic versus static cells was about equal for areas 3b, 2, 5, and 7. Only area 1 had a higher proportion of dynamic cells (76%). A third category was identified that contained cells with significant pregrip activity and included cortical cells with both dynamic or static discharge patterns. Cells in this category showed activity increases before movement in the absence of receptive-field stimulation, suggesting that, in addition to peripheral cutaneous input, these cells also receive strong excitation from movement-related regions of the brain.  (+info)

(3/2542) N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain.

Morbidity and mortality from head trauma is highest among children. No animal model mimicking traumatic brain injury in children has yet been established, and the mechanisms of neuronal degeneration after traumatic injury to the developing brain are not understood. In infant rats subjected to percussion head trauma, two types of brain damage could be characterized. The first type or primary damage evolved within 4 hr and occurred by an excitotoxic mechanism. The second type or secondary damage evolved within 6-24 hr and occurred by an apoptotic mechanism. Primary damage remained localized to the parietal cortex at the site of impact. Secondary damage affected distant sites such as the cingulate/retrosplenial cortex, subiculum, frontal cortex, thalamus and striatum. Secondary apoptotic damage was more severe than primary excitotoxic damage. Morphometric analysis demonstrated that the N-methyl-D-aspartate receptor antagonists 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonate and dizocilpine protected against primary excitotoxic damage but increased severity of secondary apoptotic damage. 2-Sulfo-alpha-phenyl-N-tert-butyl-nitrone, a free radical scavenger, did not affect primary excitotoxic damage but mitigated apoptotic damage. These observations demonstrate that apoptosis and not excitotoxicity determine neuropathologic outcome after traumatic injury to the developing brain. Whereas free radical scavengers may prove useful in therapy of head trauma in children, N-methyl-D-aspartate antagonists should be avoided because of their propensity to increase severity of apoptotic damage.  (+info)

(4/2542) The predictive value of changes in effective connectivity for human learning.

During learning, neural responses decrease over repeated exposure to identical stimuli. This repetition suppression is thought to reflect a progressive optimization of neuronal responses elicited by the task. Functional magnetic resonance imaging was used to study the neural basis of associative learning of visual objects and their locations. As expected, activation in specialized cortical areas decreased with time. However, with path analysis it was shown that, in parallel to this adaptation, increases in effective connectivity occurred between distinct cortical systems specialized for spatial and object processing. The time course of these plastic changes was highly correlated with individual learning performance, suggesting that interactions between brain areas underlie associative learning.  (+info)

(5/2542) Episodic retrieval activates the precuneus irrespective of the imagery content of word pair associates. A PET study.

The aim of this study was to evaluate further the role of the precuneus in episodic memory retrieval. The specific hypothesis addressed was that the precuneus is involved in episodic memory retrieval irrespective of the imagery content. Two groups of six right-handed normal male volunteers took part in the study. Each subject underwent six [15O]butanol-PET scans. In each of the six trials, the memory task began with the injection of a bolus of 1500 MBq of [15O]butanol. For Group 1, 12 word pair associates were presented visually, for Group 2 auditorily. The subjects of each group had to learn and retrieve two sets of 12 word pairs each. One set consisted of highly imaginable words and another one of abstract words. Words of both sets were not related semantically, representing 'hard' associations. The presentations of nonsense words served as reference conditions. We demonstrate that the precuneus shows consistent activation during episodic memory retrieval. Precuneus activation occurred in visual and auditory presentation modalities and for both highly imaginable and abstract words. The present study therefore provides further evidence that the precuneus has a specific function in episodic memory retrieval as a multimodal association area.  (+info)

(6/2542) Pure apraxic agraphia with abnormal writing stroke sequences: report of a Japanese patient with a left superior parietal haemorrhage.

A 67 year old Japanese male patient had pure agraphia after a haemorrhage in the left superior parietal lobule. He developed difficulty in letter formation but showed no linguistic errors, consistent with the criteria of apraxic agraphia. He manifested a selective disorder of sequencing writing strokes, although he was able to orally state the correct sequences. The patient's complete recovery after 1 month, without new learning, showed that he had manifested a selective disorder of writing stroke sequences. These findings indicate that the final stage of the execution of writing according to acquired sequential memory shown as a stroke sequence can be selectively disturbed, and should be considered to be distinct from the ability of character imagery and the knowledge of the writing stroke sequence itself. This case also indicates that the left superior parietal lobule plays an important part in the execution of writing.  (+info)

(7/2542) Central nervous system effects of intranasally administered insulin during euglycemia in men.

Insulin receptors have been detected in several structures of the brain, yet the biological significance of insulin acting on the brain remains rather unclear. In humans, direct central nervous effects of insulin are difficult to distinguish from alterations in neuronal functions because of insulin-induced decrease in blood glucose levels. Since several intranasally administered viruses, peptides, and hormones have been shown to penetrate directly from the nose to the brain, we tested whether insulin after intranasal administration likewise has access to the brain. After a 60-min baseline period, insulin (20 IU H-Insulin 100 Hoechst) or vehicle (2.7 mg/ml m-Cresol) was intranasally administered every 15 min to 18 healthy subjects according to a double-blind within-subject crossover design. Auditory-evoked potentials (AEP) indexing cortical sensory processing were recorded while the subjects performed a vigilance task (oddball paradigm) during the baseline phase and after 60 min of intranasal treatment with insulin or placebo. Blood glucose and serum insulin levels were not affected by intranasal insulin. Compared with placebo, intranasal administration of insulin reduced amplitudes of the N1 (P < 0.005) and P3 (P < 0.02) components of the AEP and increased P3 latency (P < 0.05). The reduction in P3 amplitude was most pronounced over the frontal recording site (2.42 +/- 1.00 vs. 4.92 +/- 0.79 microV, P < 0.0005). At this site, after insulin administration, a broad negative shift developed in the AEP between 280 and 500 ms poststimulus (area under the curve -166.0 +/- 183.8 vs. 270.8 +/- 138.7 microV x ms after placebo, P < 0.01). The results suggest that after intranasal administration, insulin directly enters the brain and exerts distinct influences on central nervous functions in humans.  (+info)

(8/2542) Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks.

We compared the effects of intracortical microstimulation (ICMS) of the lateral wall of the intraparietal sulcus (LIP) with those of ICMS of the frontal eye field (FEF) on monkeys performing oculomotor tasks. When ICMS was applied during a task that involved fixation, contraversive saccades evoked in the LIP and FEF appeared similar. When ICMS was applied to the FEF at the onset of voluntary saccades, the evoked saccades collided with the ongoing voluntary saccade so that the trajectory of voluntary saccade was compensated by the stimulus. Thus the resultant saccade was redirected and came close to the endpoint of saccades evoked from the fixation point before the start of voluntary saccade. In contrast, when ICMS was applied to the LIP at the onset of voluntary saccades, the resultant saccade followed a trajectory that was different from that evoked from the FEF. In that case, the colliding saccades were redirected toward an endpoint that was close to the endpoint of saccades evoked when animals were already fixating at the target of the voluntary saccade. This finding suggests that the colliding saccade was directed toward an endpoint calculated with reference to the target of the voluntary saccade. We hypothesize that, shortly before initiation of voluntary saccades, a dynamic process occurs in the LIP so that the reference point for calculating the saccade target shifts from the fixation point to the target of a voluntary saccade. Such predictive updating of reference points seems useful for immediate reprogramming of upcoming saccades that can occur in rapid succession.  (+info)