Effects of acute hypotensive stimuli on arginine vasopressin gene transcription in the rat hypothalamus. (49/970)

We investigated the baroregulation of arginine vasopressin (AVP) gene transcription in the supraoptic (SON) and paraventricular nuclei (PVN) in conscious rats by use of intronic in situ hybridization. Hemorrhage of 16 ml/kg body wt decreased mean arterial pressure (MAP) by 57% and increased both plasma AVP (control, 1.2 +/- 0.3 pg/ml; 16 ml/kg body wt, 38.9 +/- 3.2 pg/ml) at 10 min and AVP heteronuclear (hn)RNA levels (SON, 150%; PVN, 140% of control values) at 20 min. On the other hand, hemorrhage of 7 ml/kg body wt had no significant effect on MAP, plasma AVP, or the AVP hnRNA levels. To better understand the baroregulation, we also examined the effects of sodium nitroprusside (SNP), which induces hypotension without a change in blood volume. The subcutaneous injection of 2 mg/kg body wt SNP, which decreased the MAP by 60%, increased both plasma AVP (control, 1.6 +/- 0.4 pg/ml; 2 mg/kg body wt, 8.1 +/- 0.4 pg/ml) at 10 min and AVP hnRNA levels (SON, 150%; PVN, 140% of control values) at 30 min. The injection of 0.1 mg/kg body wt SNP, which reduced the MAP by 10%, failed to increase either the plasma AVP or AVP hnRNA levels. These results indicate that AVP gene transcription increases rapidly after both hypotensive hemorrhage and normovolemic hypotension. In addition, it is suggested that the set point for AVP synthesis in the baroregulation is similar to that for AVP release.  (+info)

Hypothalamic nuclei are malformed in weanling offspring of low protein malnourished rat dams. (50/970)

Maternal low protein malnutrition during gestation and lactation (LP) is an animal model frequently used for the investigation of long-term deleterious consequences of perinatal growth retardation. Both perinatal malnutrition and growth retardation at birth are risk factors for diabetic and cardiovascular disturbances in later life. The pathophysiologic mechanisms responsible are unknown. Hypothalamic nuclei are decisively involved in the central nervous regulation of food intake, body weight and metabolism. We investigated effects of a low protein diet (8% protein; control diet, 17% protein) during gestation and lactation in rat dams on the organization of hypothalamic regulators of body weight and metabolism in the offspring at weaning (d 20 of life). LP offspring had significantly lower body weight than control offspring (CO; P: < 0.001), associated with hypoglycemia and hypoinsulinemia (P: < 0. 005) on d 20 of life. This was accompanied by a greater relative volume of the ventromedial hypothalamic nucleus (P: < 0.01) and a greater numerical density of Nissl-stained neurons in this nucleus (P: < 0.01) as well as in the paraventricular hypothalamic nucleus (PVN; P: < 0.001). In contrast, no significant differences in neuronal densities were observed generally in the lateral hypothalamic area, arcuate hypothalamic nucleus (ARC), and dorsomedial hypothalamic nucleus between LP offspring and CO offspring. On the other hand, LP offspring displayed fewer neurons immunopositive for neuropeptide Y in the ARC (P: < 0.05), whereas in the PVN, lower neuronal densities of neurons immunopositive for galanin were found in LP offspring compared with CO offspring (P: < 0.001). On the contrary, in the PVN, no significant group difference in the numerical density of cholecystokinin-8S-positive neurons was present. A long-term effect of these specific hypothalamic alterations on body weight and metabolism in LP offspring during later life is suggested.  (+info)

A slow transient potassium current expressed in a subset of neurosecretory neurons of the hypothalamic paraventricular nucleus. (51/970)

Type I putative magnocellular neurosecretory cells of the hypothalamic paraventricular nucleus (PVN) express a prominent transient outward rectification generated by an A-type potassium current. Described here is a slow transient outward current that alters cell excitability and firing frequency in a subset of type I PVN neurons (38%). Unlike most of the type I neurons (62%), the transient outward current in these cells was composed of two kinetically separable current components, a fast activating, fast inactivating component, resembling an A-type potassium current, and a slowly activating [10-90% rise time: 20.4 +/- 12.8 (SE) ms], slowly inactivating component (time constant of inactivation: tau = 239.0 +/- 66.1 ms). The voltage dependence of activation and inactivation and the sensitivity to block by 4-aminopyridine (5 mM) and tetraethylammonium chloride (10 mM) of the fast and slow components were similar. Compared to the other type I neurons, the neurons that expressed the slow transient outward current were less excitable when hyperpolarized, requiring larger current injections to elicit an action potential (58.5 +/- 13.2 vs. 15.4 +/- 2.4 pA; 250-ms duration; P < 0.01), displaying a longer delay to the first spike (184.9 +/- 15.7 vs. 89.7 +/- 8.8 ms with 250- to 1,000-ms, 50-pA current pulses; P < 0.01), and firing at a lower frequency (18. 7 +/- 4.6 vs. 37.0 +/- 5.5 Hz with 100-pA current injections; P < 0. 05). These data suggest that a distinct subset of type I PVN neurons express a novel slow transient outward current that leads to a lower excitability. Based on double labeling following retrograde transport of systemically administered fluoro-gold and intracellular injection of biocytin, these cells are neurosecretory and are similar morphologically to magnocellular neurosecretory cells, although it remains to be determined whether they are magnocellular neurons.  (+info)

A defect of lipopolysaccharide-induced nitric oxide synthase gene expression in the paraventricular nucleus of Lewis rats. (52/970)

The hypothalamo-pituitary-adrenal (HPA) axis activity of Lewis rats has been reported to be hyporesponsive to immune challenge, and nitric oxide (NO) has been demonstrated to be involved in the regulation of the HPA axis during the response to immune challenge. The present study investigates the effect of systemic injection of lipopolysaccharide (LPS) on NO production within the paraventricular nucleus (PVN) of immature female Fisher-344 (F344) and Lew/N rats (Lew/N), to clarify the pathophysiological role of NO in the dysregulation of the HPA axis in Lewis/N. Intraperitoneal injection of 25 mg/kg LPS significantly increased neuronal NO synthase (nNOS) mRNA expression in the PVN of F344 rats, but did not change nNOS mRNA levels in the PVN of Lew/N rats. CRF mRNA levels in the PVN significantly increased in response to LPS injection only in F344 rats. In contrast, inducible NOS (iNOS) mRNA increased similarly in both strains. These results demonstrated a defect of up-regulation of nNOS gene expression in the PVN of Lew/N rats following immune challenge. The defect appears to be associated with the dysfunction of the HPA axis in this strain. An increase in iNOS mRNA may partially restore NO production in the PVN.  (+info)

The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. (53/970)

Hypothalamic nuclei, including the anterior periventricular (aPV), paraventricular (PVN), and supraoptic (SON) nuclei strongly express the homeobox gene Orthopedia (Otp) during embryogenesis. Targeted inactivation of Otp in the mouse results in the loss of these nuclei in the homozygous null neonates. The Otp null hypothalamus fails to secrete neuropeptides somatostatin, arginine vasopressin, oxytocin, corticotropin-releasing hormone, and thyrotropin-releasing hormone in an appropriate spatial and temporal fashion, and leads to the death of Otp null pups shortly after birth. Failure to produce these neuropeptide hormones is evident prior to E15.5, indicating a failure in terminal differentiation of the aPV/PVN/SON neurons. Absence of elevated apoptotic activity, but reduced cell proliferation together with the ectopic activation of Six3 expression in the presumptive PVN, indicates a critical role for Otp in terminal differentiation and maturation of these neuroendocrine cell lineages. Otp employs distinct regulatory mechanisms to modulate the expression of specific molecular markers in the developing hypothalamus. At early embryonic stages, expression of Sim2 is immediately downregulated as a result of the absence of Otp, indicating a potential role for Otp as an upstream regulator of Sim2. In contrast, the regulation of Brn4 which is also expressed in the SON and PVN is independent of Otp function. Hence no strong evidence links Otp and Brn4 in the same regulatory pathway. The involvement of Otp and Sim1 in specifying specific hypothalamic neurosecretory cell lineages is shown to operate via distinct signaling pathways that partially overlap with Brn2.  (+info)

Repeated 2-deoxy-D-glucose-induced glucoprivation attenuates Fos expression and glucoregulatory responses during subsequent glucoprivation. (54/970)

A condition of reduced responsiveness to hypoglycemia, known as hypoglycemia-associated autonomic failure (HAAF), occurs in diabetic patients in the wake of a prior hypoglycemic episode. This condition suggests that hypoglycemia alters central glucose-sensing mechanisms. This experiment examined the effects of repeated 2-deoxy-D-glucose (2DG)-induced glucoprivation on subsequent 2DG-induced feeding and hyperglycemic responses in rats. Fos immunoreactivity (ir) in adrenal medulla and brain sites involved in these responses was also examined. Rats were injected daily for 10 days with 2DG (200 mg/kg) or saline (0.9%) or were handled. On day 11, rats were injected with 2DG (200 mg/kg). After injection, food intake was measured in one group. In another group, food was withheld, and multiple blood samples were collected for glucose determination. In a third group, food was withheld, and rats were killed after 2 h for evaluation of Fos-ir. Prior repeated glucoprivation reduced subsequent feeding and hyperglycemia responses to 2DG to baseline levels. Double-label immunohistochemistry showed that Fos-ir was reduced or abolished in catecholamine cell groups A1, A1/C1, C1, C3, and A6 and in the paraventricular nucleus of the hypothalamus and adrenal medulla. In other brain sites, 2DG-induced Fos-ir was diminished or unaffected by prior glucoprivation. Sites in which Fos-ir was abolished have been implicated previously in glucoprivic control of feeding and adrenal medullary secretion. Therefore, the present findings may identify crucial neuroanatomical sites that are altered by prior glucoprivation and that mediate some of the physiological deficits observed in HAAF.  (+info)

Osmotic threshold and sensitivity for vasopressin release and fos expression by hypertonic NaCl in ovine fetus. (55/970)

In adults, hyperosmolality stimulates central osmoreceptors, resulting in arginine vasopressin (AVP) secretion. Near-term fetal sheep have also developed mechanisms to respond to intravascular hypertonicity with stimulation of in utero AVP release. However, prior studies demonstrating fetal AVP secretion have utilized plasma tonicity changes greater than those required for adult osmotically induced AVP stimulation. We sought to examine near-term fetal plasma osmolality threshold and sensitivity for stimulation of AVP secretion and to correlate plasma hormone levels with central neuronal responsiveness. Chronically instrumented ovine fetuses (130 +/- 2 days) and maternal ewes simultaneously received either isotonic or hypertonic intravascular NaCl infusions. Maternal and fetal plasma AVP and angiotensin II (ANG II) levels were examined at progressively increasing levels of plasma hypertonicity. Intravenous hypertonic NaCl gradually elevated plasma osmolality and sodium levels. Both maternal and fetal plasma AVP increased during hypertonicity, whereas ANG II levels were not changed. Maternal AVP levels significantly increased with a 3% increase in plasma osmolality, whereas fetal plasma AVP significantly increased only at higher plasma osmolality levels (over 6%). Thus the slope of the regression of AVP vs. osmolality was greater for ewes than for fetuses (0.232 vs. 0.064), despite similar maternal and fetal plasma osmolality thresholds for AVP secretion (302 vs. 304 mosmol/kg). Hyperosmolality induced Fos immunoreactivity (FOS-ir) in the circumventricular organs of the fetal brain. FOS-ir was also demonstrated in the fetal supraoptic and paraventricular nuclei (SON and PVN), and double labeling demonstrated that AVP-containing neurons in the SON and PVN expressed Fos in response to intravenous NaCl. These results demonstrate that, in the ovine fetus at 130 days of gestation, neuroendocrine responses to cellular dehydration are functional, although they evidence a relatively reduced sensitivity for AVP secretion compared with the adult.  (+info)

Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. (56/970)

Because cocaine- and amphetamine-regulated transcript (CART) coexists with alpha-melanocyte stimulating hormone (alpha-MSH) in the arcuate nucleus neurons and we have recently demonstrated that alpha-MSH innervates TRH-synthesizing neurons in the hypothalamic paraventricular nucleus (PVN), we raised the possibility that CART may also be contained in fibers that innervate hypophysiotropic thyrotropin-releasing hormone (TRH) neurons and modulate TRH gene expression. Triple-labeling fluorescent in situ hybridization and immunofluorescence were performed to reveal the morphological relationships between pro-TRH mRNA-containing neurons and CART- and alpha-MSH-immunoreactive (IR) axons. CART-IR axons densely innervated the majority of pro-TRH mRNA-containing neurons in all parvocellular subdivisions of the PVN and established asymmetric synaptic specializations with pro-TRH neurons. However, whereas all alpha-MSH-IR axons in the PVN contained CART-IR, only a portion of CART-IR axons in contact with pro-TRH neurons were immunoreactive for alpha-MSH. In the medial and periventricular parvocellular subdivisions of the PVN, CART was co-contained in approximately 80% of pro-TRH neuronal perikarya, whereas colocalization with pro-TRH was found in <10% of the anterior parvocellular subdivision neurons. In addition, >80% of TRH/CART neurons in the periventricular and medial parvocellular subdivisions accumulated Fluoro-Gold after systemic administration, suggesting that CART may serve as a marker for hypophysiotropic TRH neurons. CART prevented fasting-induced suppression of pro-TRH in the PVN when administered intracerebroventricularly and increased the content of TRH in hypothalamic cell cultures. These studies establish an anatomical association between CART and pro-TRH-producing neurons in the PVN and demonstrate that CART has a stimulatory effect on hypophysiotropic TRH neurons by increasing pro-TRH gene expression and the biosynthesis of TRH.  (+info)