Influence of the conformational flexibility on the kinetics and dimerisation process of two Candida rugosa lipase isoenzymes. (9/149)

We have investigated the interfacial activation process of two isoenzymes from Candida rugosa (Lip1 and Lip3) using triacetin as substrate. Kinetics were coupled to inhibition experiments in order to analyse the transition between the open and closed conformers. This process was slow, particularly for Lip1, in the absence of an interface provided by the substrate or a detergent. Dimers of Lip3 were also purified and their catalytic action was closer to that of a typical esterase. In spite of the high sequence homology between Lip1 and Lip3, small changes enhance hydrophobicity in the binding pocket of Lip3 and increase the flexibility of its flap. We postulated that these factors account for the higher tendency of Lip3 to dimerise fixing its open conformation.  (+info)

Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? (10/149)

Human serum paraoxonase (PON1) hydrolyzes oxidized lipids in low density lipoprotein (LDL) and could therefore retard the development of atherosclerosis. In keeping with this hypothesis, several case-control studies have shown a relationship between the presence of coronary heart disease (CHD) and polymorphisms at amino acid positions 55 and 192 of PON1, which we associated with a decreased capacity of PON1 to protect LDL against the accumulation of lipid peroxides, but some other studies have not. However, the PON1 polymorphisms are only 1 factor in determining the activity and concentration of the enzyme. Only 3 of the previous 18 studies directly determined PON1 activity and concentration. Therefore, we studied PON1 activity, concentration, and gene distribution in 417 subjects with angiographically proven CHD and in 282 control subjects. We found that PON1 activity and concentration were significantly lower in subjects with CHD than in control subjects (activity to paraoxon 122.8 [3.3 to 802.8] versus 214.6 [26.3 to 620.8] nmol. min(-1). mL(-1), P<0.001; concentration 71.6 [11.4 to 489.3] versus 89.1 [16.8 to 527.4] microg/mL, P<0.001). There were no differences in the PON1-55 and -192 polymorphisms or clusterin concentration between patients with CHD and control subjects. These results indicate that lower PON1 activity and concentration and, therefore, the reduced ability to prevent LDL lipid peroxidation may be more important in determining the presence of CHD than paraoxonase genetic polymorphisms.  (+info)

Interactions of rat brain acetylcholinesterase with the detergent Triton X-100 and the organophosphate paraoxon. (11/149)

Inhibition of the critical enzyme acetylcholinesterase (E.C. 3.1.1.7) with subsequent cholinergic crisis is the mechanism of acute toxicity of the organophosphorus insecticides (B. E. Mileson et al., 1998, Toxicol. Sci.41, 8-20). Consequently, measurement of acetylcholinesterase activity is important for evaluating the mammalian toxicity of this commonly used class of insecticides. While mammalian acetylcholinesterase activity has often been determined in tissue homogenates in the presence of the nondenaturing detergent Triton X-100 at a concentration of 1%, the potential actions of this detergent on the activity of this critical enzyme are not understood. In the current study, homogenization of rat brain in buffer containing 1% Triton X-100 slightly elevated the (app)V(max) for hydrolysis of acetylthiocholine, without affecting the (app)K(m) or the (app)K(ss). However, the presence of both 1% Triton X-100 and paraoxon (at concentrations of 5 nM-100 nM) resulted in complex kinetic interactions with acetylcholinesterase, as evidenced by a curvilinear secondary plot for determination of the (app)k(i). These results suggest that measurement of acetylcholinesterase activity in the presence of up to 1% Triton X-100, but in the absence of oxon, should pose no problems with regard to data interpretation, provided it is recognized that the detergent slightly elevates activity. However, measurement of acetylcholinesterase activity after enzyme was exposed simultaneously to Triton X-100 and oxon could be problematic. Caution is warranted when interpreting data where acetylcholinesterase activity was determined under such conditions since in the presence of 1% Triton X-100, the capacity of oxon to inhibit acetylcholinesterase might change as a function of oxon levels.  (+info)

Flow-injection spectrophotometric determination of paraoxon by its inhibitory effect on the enzyme acetylcholinesterase. (12/149)

A spectrophotometric enzymatic flow injection (FI) system for the determination of diethyl-p-nitrophenylphosphate (paraoxon) is proposed. The method was based on the determination of the acetic acid formed by the enzymatic reaction of the acetylcholinesterase, immobilized on glass beads, with the substrate acetylcholine. The acetic acid formed permeates through a PTFE membrane and is received by a solution (pH 7.0) containing the acid-base indicator Bromocresol Purple (B.C.P.), leading to a pH change and therefore to a color change. The variation of the absorbance of the solution is detected spectrophotometrically at 400 nm. The determination of paraoxon is related to its inhibitory action on the enzyme. Therefore the analytical signal is the difference between the signal that corresponds to the free and the one that corresponds to the inhibited enzyme, considering a fixed acetylcholine concentration. The correlation between the peak height and paraoxon concentration at a given acetylcholine concentration is linear in the range from 5.0 x 10(-7) mol L-1 to 5.0 x 10(-5) mol L-1 (r = 0.998) of paraoxon, with a relative estimated standard deviation (R.S.D.) of +/- 1.7% (n = 10) considering a solution containing 5.0 x 10(-6) mol L-1 of paraoxon and a solution containing 5.0 x 10(-3) mol L-1 of acetylcholine. Therefore, the quantitative limit detection is about 2.5 x 10(-7) of paraoxon (3 sigma). A 1,1'-trimethylene-bis(4-formylpyridinium bromide)dioxime (TMB-4) solution was used to reactivate the enzyme.  (+info)

Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase. (13/149)

A genetically engineered Escherichia coli cell expressing both organophosphorus hydrolase (OPH) and a cellulose-binding domain (CBD) on the cell surface was constructed, enabling the simultaneous hydrolysis of organophosphate nerve agents and immobilization via specific adsorption to cellulose. OPH was displayed on the cell surface by use of the truncated ice nucleation protein (INPNC) fusion system, while the CBD was surface anchored by the Lpp-OmpA fusion system. Production of both INPNC-OPH and Lpp-OmpA-CBD fusion proteins was verified by immunoblotting, and the surface localization of OPH and the CBD was confirmed by immunofluorescence microscopy. Whole-cell immobilization with the surface-anchored CBD was very specific, forming essentially a monolayer of cells on different supports, as shown by electron micrographs. Optimal levels of OPH activity and binding affinity to cellulose supports were achieved by investigating expression under different induction levels. Immobilized cells degraded paraoxon rapidly at an initial rate of 0.65 mM/min/g of cells (dry weight) and retained almost 100% efficiency over a period of 45 days. Owing to its superior degradation capacity and affinity to cellulose, this immobilized-cell system should be an attractive alternative for large-scale detoxification of organophosphate nerve agents.  (+info)

Human and rodent carboxylesterases: immunorelatedness, overlapping substrate specificity, differential sensitivity to serine enzyme inhibitors, and tumor-related expression. (14/149)

Carboxylesterases hydrolyze numerous endogenous and foreign compounds with diverse structures. Humans and rodents express multiple forms of carboxylesterases, which share a high degree of sequence identity (approximately 70%). Alignment analyses locate in carboxylesterases several functional subsites such the catalytic triad as seen in acetylcholinesterase. The aim of this study was to determine among human and rodent carboxylesterases the immunorelatedness, overlapping substrate specificity, differential sensitivity to serine enzyme inhibitors, tissue distribution, and tumor-related expression. Six antibodies against whole carboxylesterases or synthetic peptides were tested for their reactivity toward 11 human or rodent recombinant carboxylesterases. The antibodies against whole proteins generally exhibited a broader cross-reactivity than the anti-peptide antibodies. All carboxylesterases hydrolyzed para-nitrophenylacetate and para-nitrophenylbutyrate. However, the relative activity varied markedly from enzyme to enzyme (>20-fold), and some carboxylesterases showed a clear substrate preference. Carboxylesterases with the same functional subsites had a similar profile on substrate specificity and sensitivity toward phenylmethylsulfonyl fluoride (PMSF) and paraoxon, suggesting that these subsites play determinant roles in the recognition of substrates and inhibitors. Among three human carboxylesterases, HCE-1 hydrolyzed both substrates to a similar extent, whereas HCE-2 and HCE-3 showed an opposite substrate preference. All three enzymes were inhibited by PMSF and paraoxon, but they showed a marked difference in relative sensitivities. Based on immunoblotting analyses, HCE-1 was present in all tissues examined, whereas HCE-2 and HCE-3 were expressed in a tissue-restricted pattern. Colon carcinomas expressed slightly higher levels of HCE-1 and HCE-2 than the adjacent normal tissues, whereas the opposite was true with HCE-3.  (+info)

Reactivation of immobilized acetyl cholinesterase in an amperometric biosensor for organophosphorus pesticide. (15/149)

Biosensors based on acetyl cholinesterase (AChE) inhibition have been known for monitoring of pesticides in food and water samples. However, strong inhibition of the enzyme is a major drawback in practical application of the biosensor which can be overcome by reactivation of the enzyme for repeated use. In the present study, enzyme reactivation by oximes was explored for this purpose. Two oximes viz., 1,1'-trimethylene bis 4-formylpyridinium bromide dioxime (TMB-4) and pyridine 2-aldoxime methiodide (2-PAM) were compared for the reactivation of the immobilized AChE. TMB-4 was found to be a more efficient reactivator under repeated use, retaining more than 60% of initial activity after 11 reuses, whereas in the case of 2-PAM, the activity retention dropped to less than 50% after only 6 reuses. Investigations also showed that reactivation must be effected within 10 min after each analysis to eliminate the ageing effect, which reduces the efficiency of reactivation.  (+info)

Characterization of butyrylcholinesterase antagonism of cocaine-induced hyperactivity. (16/149)

Although there are several published demonstrations that exogenous butyrylcholinesterase (EC 3.1.1.8) works to antagonize cocaine in vivo, a systematic characterization of the enzyme-drug interaction is lacking as is confirmation of the mechanism of effect. This has been addressed using cocaine-induced locomotor activity in mice as a behavioral endpoint. The enzyme was effective, but the enzyme dose-antagonist effect relationship revealed an asymptotic partial maximum effect. This effect was not due to dose-dependent enzyme pharmacokinetics or to a stimulant effect of the cocaine metabolites but rather to partial metabolism of cocaine. Since neither metabolite of cocaine inhibited enzyme activity as potently as cocaine, partial metabolism is not likely due to end-product inhibition. The enzyme reduced the maximum effect of cocaine on locomotor activity. The mechanistic data are generally consistent: the enzyme was inactive against the nonester dopamine/norepinephrine uptake inhibitor, nomifensine, and a paraoxon-inactivated sample of enzyme was ineffective. However, the enzyme was effective against bupropion, a nonester dopamine uptake inhibitor.  (+info)