Characterization of sea urchin transglutaminase, a protein regulated by guanine/adenine nucleotides. (1/24)

Transglutaminases (TGs) are calcium-dependent enzymes that catalyze the transamidation of glutamine residues to form intermolecular isopeptide bonds. Nine distinct TGs have been identified in mammals, and three of them (types 2, 3, and 5) are regulated by GTP/ATP and are able to hydrolyze GTP, working as bifunctional enzymes. We have isolated a cDNA clone encoding a TG from a cDNA library prepared from the blastula stage of sea urchin Paracentrotus lividus (PlTG). The cDNA sequence has an open reading frame coding for a protein of 738 amino acids, including a Cys active site and two other residues critical for catalytic activity, His and Asp. We have studied its expression pattern by in situ hybridization and have also demonstrated that the in vitro expressed PlTG had GTP- and ATP-hydrolyzing activity; moreover, GTP inhibited the transamidating activity of this enzyme as it does that of human TG2, TG3, and TG5.  (+info)

Nuclear envelope assembly is promoted by phosphoinositide-specific phospholipase C with selective recruitment of phosphatidylinositol-enriched membranes. (2/24)

Nuclear envelope (NE) formation in a cell-free egg extract proceeds by precursor membrane vesicle binding to chromatin in an ATP-dependent manner, followed by a GTP-induced NE assembly step. The requirement for GTP in the latter step of this process can be mimicked by addition of bacterial PI-PLC [phosphoinositide (PtdIns)-specific phospholipase C]. The NE assembly process is here dissected in relation to the requirement for endogenous phosphoinositide metabolism, employing recombinant eukaryotic PI-PLC, inhibitors and direct phospholipid analysis using ESI-MS (electrospray ionization mass spectrometry). PtdIns (phosphatidylinositol) species analysis by ESI-MS indicates that the chromatin-bound NE precursor vesicles are enriched for specific PtdIns species. Moreover, during GTP-induced precursor vesicle fusion, the membrane vesicles become partially depleted of the PtdIns 18:0/20:4 species. These data indicate that eukaryotic PI-PLC can support NE formation, and the sensitivity to exogenous recombinant PtdIns-5-phosphatases shows that the endogenous PLC hydrolyses a 5-phosphorylated species. It is shown further that the downstream target of this DAG (diacylglycerol) pathway does not involve PKC (protein kinase C) catalytic function, but is mimicked by phorbol esters, indicating a possible engagement of one of the non-PKC phorbol ester receptors. The results show that ESI-MS can be used as a sensitive means to measure the lipid composition of biological membranes and their changes during, for example, membrane fusogenic events. We have exploited this and the intervention studies to illustrate a pivotal role for PI-PLC and its product DAG in the formation of NEs.  (+info)

Toxicity of recombinant beta-amyloid prefibrillar oligomers on the morphogenesis of the sea urchin Paracentrotus lividus. (3/24)

A distinctive feature of Alzheimer's disease is the deposition of amyloid beta-protein (Abeta) in senile or diffuse plaques. The 42 residue beta-peptide (Abeta42) is the predominant form found in plaques. In the present work we report a high-yield expression and purification method of production of a recombinant Abeta42. The purified recombinant peptide shows characteristics similar to the synthetic human peptide. Different size aggregates, either small oligomers or larger aggregates, were obtained upon dissolving the recombinant Abeta42 peptide under different conditions at pH 7.2 or pH 3, respectively. We report a new toxicity assay on the morphogenic development of the sea urchin Paracentrotus lividus and study the toxicity of the two kinds of aggregates. Despite the difference between the ionic strength of human extracellular fluid (0.154 mol/l) and artificial sea water (0.48 mol/l), toxicity data collected in this system have an intrinsic relevance. The different ionic strength, in fact, could change the kinetics of oligomer formation, but the effect of morphogenic development reported here is related to the final oligomer sizes. Results of the toxicity assay of Abeta42 on sea urchin development also show a dose-dependent effect. After only 4 h of embryo development, one can note morphological defects in the cell membrane. Retardation of the embryo's development, along with cellular disorders visible inside the blastocoele, can be observed after 1 day of development. Cellular degeneration in two different pathological phenotypes-the occluded blastulae and the occluded prism-is present after 48 h of development. Results show that a greater effect on cell death is induced by the small oligomers stabilized under physiological conditions than at acid pH. In this case only occluded blastulae are found after 48 h of development.  (+info)

First cell cycles of sea urchin Paracentrotus lividus are dramatically impaired by exposure to extremely low-frequency electromagnetic field. (4/24)

Exposure of fertilized eggs of the sea urchin Paracentrotus lividus to an electromagnetic field of 75-Hz frequency and low amplitudes (from 0.75 to 2.20 mT of magnetic component) leads to a dramatic loss of synchronization of the first cell cycle, with formation of anomalous embryos linked to irregular separation of chromatids during the mitotic events. Because acetylcholinesterase (ACHE) is thought to regulate the embryonic first developmental events of the sea urchin, its enzymatic activity was assayed in embryo homogenates and decreased by 48% when the homogenates were exposed to the same pulsed field. This enzymatic inactivation had a threshold of about 0.75 +/- 0.01 mT. The same field threshold was found for the effect on the formation of anomalous embryos of P. lividus. Moreover, ACHE inhibitors seem to induce the same teratological effects as those caused by the field, while blockers of acetylcholine (ACh) receptors are able to antagonize those effects. We conclude that one of the main causes of these dramatic effects on the early development of the sea urchin by field exposure could be the accumulation of ACh due to ACHE inactivation. The crucial role of the membrane in determining the conditions for enzyme inactivation is discussed.  (+info)

Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo. (5/24)

Studies in Caenorhabditis elegans and vertebrates have established that the MAP kinase-related protein NLK counteracts Wnt signalling by downregulating the transcription factor TCF. Here, we present evidence that during early development of the sea urchin embryo, NLK is expressed in the mesodermal precursors in response to Notch signalling and directs their fate by downregulating TCF. The expression pattern of nlk is strikingly similar to that of Delta and the two genes regulate the expression of each other. nlk overexpression, like ectopic activation of Notch signalling, provoked massive formation of mesoderm and associated epithelial mesenchymal transition. NLK function was found to be redundant with that of the MAP kinase ERK during mesoderm formation and to require the activity of the activating kinase TAK1. In addition, the sea urchin NLK, like its vertebrate counterpart, antagonizes the activity of the transcription factor TCF. Finally, activating the expression of a TCF-VP16 construct at blastula stages strongly inhibits endoderm and mesoderm formation, indicating that while TCF activity is required early for launching the endomesoderm gene regulatory network, it has to be downregulated at blastula stage in the mesodermal lineage. Taken together, our results indicate that the evolutionarily conserved TAK/NLK regulatory pathway has been recruited downstream of the Notch/Delta pathway in the sea urchin to switch off TCF-beta-catenin signalling in the mesodermal territory, allowing precursors of this germ layer to segregate from the endomesoderm.  (+info)

Cloning of the sea urchin mitochondrial RNA polymerase and reconstitution of the transcription termination system. (6/24)

Termination of transcription is a key process in the regulation of mitochondrial gene expression in animal cells. To investigate transcription termination in sea urchin mitochondria, we cloned the mitochondrial RNA polymerase (mtRNAP) of Paracentrotus lividus and used a recombinant form of the enzyme in a reconstituted transcription system, in the presence of the DNA-binding protein mtDBP. Cloning of mtRNAP was performed by a combination of PCR with degenerate primers and library screening. The enzyme contains 10 phage-like conserved motifs, two pentatricopeptide motifs and a serine-rich stretch. The protein expressed in insect cells supports transcription elongation in a promoter-independent assay. Addition of recombinant mtDBP caused arrest of the transcribing mtRNAP when the enzyme approached the mtDBP-binding site in the direction of transcription of mtDNA l-strand. When the polymerase encountered the protein-binding site in the opposite direction, termination occurred in a protein-independent manner, inside the mtDBP-binding site. Pulse-chase experiments show that mtDBP caused true transcription termination rather than pausing. These data indicate that mtDBP acts as polar termination factor and suggest that transcription termination in sea urchin mitochondria could take place by two alternative modes based on protein-mediated or sequence-dependent mechanisms.  (+info)

Promoter activity of the sea urchin (Paracentrotus lividus) nucleosomal H3 and H2A and linker H1 {alpha}-histone genes is modulated by enhancer and chromatin insulator. (7/24)


Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. (8/24)