Effect of fast duration on disposition of an intraduodenal glucose load in the conscious dog. (1/134)

The effects of prior fast duration (18 h, n = 8; 42 h, n = 8) on the glycemic and tissue-specific responses to an intraduodenal glucose load were studied in chronically catheterized conscious dogs. [3-3H]glucose was infused throughout the study. After basal measurements, glucose spiked with [U-14C]glucose was infused for 150 min intraduodenally. Arterial insulin and glucagon were similar in the two groups. Arterial glucose (mg/dl) rose approximately 70% more during glucose infusion after 42 h than after an 18-h fast. The net hepatic glucose balance (mg. kg-1. min-1) was similar in the two groups (basal: 1.8 +/- 0.2 and 2.0 +/- 0.3; glucose infusion: -2.2 +/- 0.5 and -2.2 +/- 0.7). The intrahepatic fate of glucose was 79% glycogen, 13% oxidized, and 8% lactate release after a 42-h fast; it was 23% glycogen, 21% oxidized, and 56% lactate release after an 18-h fast. Net hindlimb glucose uptake was similar between groups. The appearance of intraduodenal glucose during glucose infusion (mg/kg) was 900 +/- 50 and 1,120 +/- 40 after 18- and 42-h fasts (P < 0.01). CONCLUSION: glucose administration after prolonged fasting induces higher circulating glucose than a shorter fast (increased appearance of intraduodenal glucose); liver and hindlimb glucose uptakes and the hormonal response, however, are unchanged; finally, an intrahepatic redistribution of carbons favors glycogen deposition.  (+info)

Interaction of islet hormones with cholecystokinin octapeptide-evoked secretory responses in the isolated pancreas of normal and diabetic rats. (2/134)

This study investigates the effects of the islet hormones, insulin (Ins), glucagon (Glu) and somatostatin (Som) with cholecystokinin octapeptide (CCK-8) on amylase secretion and intracellular free calcium concentration [Ca2+]i and their pattern of distribution in the isolated pancreas of normal and diabetic rats. Ins and Glu evoked small increases in amylase output from pancreatic segments compared with a much enhanced effect of CCK-8. In contrast, Som induced a biphasic response comprising an initial decrease followed by a secondary increase and this biphasic response may be dependent upon the concentration. Combining the islet hormones with CCK-8 resulted in marked potentiation in amylase output compared with either CCK-8 alone or the individual hormone. Genistein and tyrphostin A25, the tyrosine kinase inhibitors, evoked a small decrease in amylase output from pancreatic segments. They had no effect on the CCK-8-evoked secretory response but markedly inhibited the potentiation of the islet hormones with CCK-8. In pancreatic acini and acinar cells Ins, Glu and Som individually evoked small increases in amylase output compared with a much larger response with CCK-8. When the islet hormones were combined with CCK-8 there was no potentiation of amylase output. Similarly, when rats were rendered diabetic by prior treatment with streptozotocin Ins, Glu and Som failed to potentiate the secretory response of CCK-8. In fura-2-loaded pancreatic acinar cells Ins or Glu evoked small increases in [Ca2+]i compared with a much larger elevation with CCK-8. Ins, Glu and Som each enhanced the CCK-8-evoked [Ca2+]i. Genistein elicited a decrease in [Ca2+]i both in the absence and presence of the islet hormones. It also decreased the elevation in [Ca2+]i resulting from the combined presence of CCK-8 with either Ins or Glu but it had no effect on CCK-8 in combination with Som. In pancreatic acinar cells from diabetic rat Ins, Glu and Som had no detectable effect on CCK-8-evoked elevation in [Ca2+]i compared with the response obtained with CCK-8 alone. CCK-8-immunopositive cells were distributed around the walls of blood vessels, numerous Ins-positive cells in the central and peripheral parts of the islets of Langerhans, Glu-immunoreactive cells in the periphery of islets and Som-positive cells in the outer part of the islets. During diabetes, the number of CCK-immunopositive cells remained unchanged whereas the number of Ins-positive cells decreased coupled with an increase in the number of Glu-positive cells. The results indicate that both tyrosine kinase and cellular Ca2+ seem to be the intracellular mediators involved with the enhanced secretory responses obtained with a combination of the islet hormones with CCK-8. Moreover, the presence of viable pancreatic islets of Langerhans seems to be associated with the potentiation of the islet hormones with CCK-8.  (+info)

Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. (3/134)

Differentiated pancreatic beta cells are unique in their ability to secrete insulin in response to a rise in plasma glucose. We have proposed that the unique constellation of genes they express may be lost in diabetes due to the deleterious effect of chronic hyperglycemia. To test this hypothesis, Sprague-Dawley rats were submitted to a 85-95% pancreatectomy or sham pancreatectomy. One week later, the animals developed mild to severe chronic hyperglycemia that was stable for the next 3 weeks, without significant alteration of plasma nonesterified fatty acid levels. Expression of many genes important for glucose-induced insulin release decreased progressively with increasing hyperglycemia, in parallel with a reduction of several islet transcription factors involved in beta cell development and differentiation. In contrast, genes barely expressed in sham islets (lactate dehydrogenase A and hexokinase I) were markedly increased, in parallel with an increase in the transcription factor c-Myc, a potent stimulator of cell growth. These abnormalities were accompanied by beta cell hypertrophy. Changes in gene expression were fully developed 2 weeks after pancreatectomy. Correction of blood glucose by phlorizin for the next 2 weeks normalized islet gene expression and beta cell volume without affecting plasma nonesterified fatty acid levels, strongly suggesting that hyperglycemia triggers these abnormalities. In conclusion, chronic hyperglycemia leads to beta cell hypertrophy and loss of beta cell differentiation that is correlated with changes in c-Myc and other key transcription factors. A similar change in beta cell differentiation could contribute to the profound derangement of insulin secretion in human diabetes.  (+info)

Prior exercise increases net hepatic glucose uptake during a glucose load. (4/134)

The aim of these studies was to determine whether prior exercise enhances net hepatic glucose uptake (NHGU) during a glucose load. Sampling catheters (carotid artery, portal, hepatic, and iliac veins), infusion catheters (portal vein and vena cava), and Doppler flow probes (portal vein, hepatic and iliac arteries) were implanted. Exercise (150 min; n = 6) or rest (n = 6) was followed by a 30-min control period and a 100-min experimental period (3.5 mg. kg-1. min-1 of glucose in portal vein and as needed in vena cava to clamp arterial blood glucose at approximately 130 mg/dl). Somatostatin was infused, and insulin and glucagon were replaced intraportally at fourfold basal and basal rates, respectively. During experimental period the arterial-portal venous (a-pv) glucose gradient (mg/dl) was -18 +/- 1 in sedentary and -19 +/- 1 in exercised dogs. Arterial insulin and glucagon were similar in the two groups. Net hepatic glucose balance (mg. kg-1. min-1) shifted from 1.9 +/- 0.2 in control period to -1.8 +/- 0.2 (negative rates represent net uptake) during experimental period in sedentary dogs (Delta3.7 +/- 0.5); with prior exercise it shifted from 4.1 +/- 0.3 (P < 0.01 vs. sedentary) in control period to -3.2 +/- 0.4 (P < 0.05 vs. sedentary) during experimental period (Delta7.3 +/- 0.7, P < 0.01 vs. sedentary). Net hindlimb glucose uptake (mg/min) was 4 +/- 1 in sedentary animals in control period and 13 +/- 2 during experimental period; in exercised animals it was 7 +/- 1 in control period (P < 0. 01 vs. sedentary) and 32 +/- 4 (P < 0.01 vs. sedentary) during experimental period. As the total glucose infusion rate (mg. kg-1. min-1) was 7 +/- 1 in sedentary and 11 +/- 1 in exercised dogs, approximately 30% of the added glucose infusion due to prior exercise could be accounted for by the greater NHGU. In conclusion, when determinants of hepatic glucose uptake (insulin, glucagon, a-pv glucose gradient, glycemia) are controlled, prior exercise increases NHGU during a glucose load due to an effect that is intrinsic to the liver. Increased glucose disposal in the postexercise state is therefore due to an improved ability of both liver and muscle to take up glucose.  (+info)

Pharmacological analysis of CCK2 receptor antagonists using isolated rat stomach ECL cells. (5/134)

1. Gastrin stimulates rat stomach ECL cells to secrete histamine and pacreastatin, a chromogranin A (CGA)-derived peptide. The present report describes the effect of nine cholecystokinin2 (CCK2) receptor antagonists and one CCK1 receptor antagonist on the gastrin-evoked secretion of pancreastatin from isolated ECL cells. 2. The CCK2 receptor antagonists comprised three benzodiazepine derivatives L-740,093, YM022 and YF476, one ureidoacetamide compound RP73870, one benzimidazole compound JB 93182, one ureidoindoline compound AG041R and three tryptophan dipeptoids PD 134308 (CI988), PD135158 and PD 136450. The CCK1 receptor antagonist was devazepide. 3. A preparation of well-functioning ECL cells (approximately 80% purity) was prepared from rat oxyntic mucosa using counter-flow elutriation. The cells were cultured for 48 h in the presence of 0.1 nM gastrin; they were then washed and incubated with antagonist alone or with various concentrations of antagonist plus 10 nM gastrin (a maximally effective concentration) for 30 min. Gastrin dose-response curves were constructed in the absence or presence of increasing concentrations of antagonist. The amount of pancreastatin secreted was determined by radioimmunoassay. 4. The gastrin-evoked secretion of pancreastatin was inhibited in a dose-dependent manner. YM022, AG041R and YF476 had IC50 values of 0.5, 2.2 and 2.7 nM respectively. L-740,093, JB93182 and RP73870 had IC50 values of 7.8, 9.3 and 9.8 nM, while PD135158, PD136450 and PD134308 had IC50 values of 76, 135 and 145 nM. The CCK1 receptor antagonist devazepide was a poor CCK2 receptor antagonist with an IC50 of about 800 nM. 5. YM022, YF476 and AG041R were chosen for further analysis. YM022 and YF476 shifted the gastrin dose-response curve to the right in a manner suggesting competitive antagonism, while the effects of AG041R could not be explained by simple competitive antagonism. pK(B) values were 11.3 for YM022, 10.8 for YF476 and the apparent pK(B) for AG041R was 10.4.  (+info)

Characterization of pancreastatin receptors and signaling in adipocyte membranes. (6/134)

Pancreastatin (PST), a chromogranin A derived peptide with an array of effects in different tissues, has a role as a counterregulatory hormone of insulin action in hepatocytes and adipocytes, regulating glucose, lipid and protein metabolism. We have previously characterized PST receptors and signaling in rat hepatocytes, in which PST functions as a calcium-mobilizing hormone. In the present work we have studied PST receptors as well as the signal transduction pathways generated upon PST binding in adipocyte membranes. First, we have characterized PST receptors using radiolabeled PST as a ligand. Analysis of binding data indicated the existence of one class of binding sites, with a B(max) of 5 fmol/mg of protein and a K(d) of 1 nM. In addition, we have studied the G protein system that couples the PST receptor by gamma-(35)S-GTP binding studies. We have found that two G protein systems are involved, pertussis toxin-sensitive and -insensitive respectively. Specific anti-G protein alpha subtype sera were used to block the effect of pancreastatin receptor activation. Galpha(q/11) and to a lesser extent Galpha(i1,2) are activated by PST in rat adipocyte membranes. On the other hand, adenylate cyclase activity was not affected by PST. Finally, we have studied the specific phospholipase C isoform that is activated in response to PST. We have found that PST receptor is coupled to PLC-beta(3) via Galpha(q/11) activation in adipocyte membranes.  (+info)

Physiology of the ECL cells. (7/134)

The enterochromaffin-like (ECL) cells of the oxyntic mucosa (fundus) of the stomach produce, store and secrete histamine, chromogranin A-derived peptides such as pancreastatin, and an unanticipated but as yet unidentified peptide hormone. The cells are stimulated by gastrin and pituitary adenylate cyclase activating peptide and suppressed by somatostatin and galanin. Choline esters and histamine seem to be without effect on ECL cell secretion. The existence of a gastrin-ECL cell axis not only explains how gastrin stimulates acid secretion but also may help to explore the functional significance of the ECL cells with respect to the nature and bioactivity of its peptide hormone. From the results of studies of gastrectomized/fundectomized and gastrin-treated rats, it has been speculated that the anticipated ECL-cell peptide hormone acts on bone metabolism.  (+info)

ECL cell morphology. (8/134)

Using immunohistochemistry at the conventional light, confocal and electron microscopic levels, we have demonstrated that rat stomach ECL cells store histamine and pancreastatin in granules and secretory vesicles, while histidine decarboxylase occurs in the cytosol. Furthermore the ECL cells display immunoreactivity for vesicular monoamine transporter type 2 (VMAT-2), synaptophysin, synaptotagmin III, vesicle-associated membrane protein-2, cysteine string protein, synaptosomal-associated protein of 25 kDa, syntaxin and Munc-18. Using electron microscopy in combination with stereological methods, we have evidence to suggest the existence of both an exocytotic and a crinophagic pathway in the ECL cells. The process of exocytosis in the ECL cells seems to involve a class of proteins that promote or participate in the fusion between the granule/vesicle membrane and the plasma membrane. The granules take up histamine by VMAT-2 from the cytosol during transport from the Golgi zone to the more peripheral parts of the cells. As a result, they turn into secretory vesicles. As a consequence of stimulation (e.g., by gastrin), the secretory vesicles fuse with the cell membrane to release their contents by exocytosis. The crinophagic pathway was studied in hypergastrinemic rats. In the ECL cells of such animals, the secretory vesicles were found to fuse not only with the cell membrane but also with each other to form vacuoles. Subsequent lysosomal degradation of the vacuoles and their contents resulted in the development of lipofuscin bodies.  (+info)