The development and structure of the chimpanzee mandible. (1/2159)

The sites of growth and remodeling, and the associated changes in cortical bone structure, have been studied in the chimpanzee mandible and compared with those previously reported in the human and macaque mandibles. The location of the principal sites of growth, and the distribution of the areas of deposition and resorption in the ramus, were found to be similar in all three species. In the chimpanzee, unlike Man, the bone being deposited at the condyle, posterior border of the ramus and coronoid process was plexiform in nature, indicating very rapid growth. The pattern of remodeling in the mandibular body, on the other hand, showed marked species differences at the chin and on the submandibular lingual surface, which account for the contrasts seen in the adult morphology of these regions. Although the pattern of distribution of cortical densities differed from that of surface remodeling, the information they give is complementary in analysing bone growth. The densest regions were found to coincide with sites of consistent lamellar deposition, while the least dense regions were those where plexiform bone was formed. Areas where remodeling led to the greatest reorientation of bone tissue within the cortex showed the greatest disparity between the two patterns.  (+info)

Third component, HBeAg/3, of hepatitis B e antigen system, identified by three different double-diffusion techniques. (2/2159)

A third component, HB(e)AG/3, of the hepatitis B e antigen system has been detected, and it was consistently detected in three variations of the double-diffusion technique.  (+info)

In vivo analysis of the 3' untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. (3/2159)

Large sections of the 3' untranslated region (UTR) of hepatitis C virus (HCV) were deleted from an infectious cDNA clone, and the RNA transcripts from seven deletion mutants were tested sequentially for infectivity in a chimpanzee. Mutants lacking all or part of the 3' terminal conserved region or the poly(U-UC) region were unable to infect the chimpanzee, indicating that both regions are critical for infectivity in vivo. However, the third region, the variable region, was able to tolerate a deletion that destroyed the two putative stem-loop structures within this region. Mutant VR-24 containing a deletion of the proximal 24 nt of the variable region of the 3' UTR was viable in the chimpanzee and seemed to replicate as well as the undeleted parent virus. The chimpanzee became viremic 1 week after inoculation with mutant VR-24, and the HCV genome titer increased over time during the early acute infection. Therefore, the poly(U-UC) region and the conserved region, but not the variable region, of the 3' UTR seem to be critical for in vivo infectivity of HCV.  (+info)

Experimental transmission of hepatitis C virus-associated fulminant hepatitis to a chimpanzee. (4/2159)

Hepatitis C virus (HCV) was transmitted from a patient with fulminant hepatitis C to a chimpanzee. The patient had developed two episodes of fulminant hepatitis C, each occurring after a separate liver transplantation. Serial serum and liver samples from the patient and the chimpanzee were analyzed for HCV replication, genotype, quasispecies heterogeneity, and antibodies. In the patient, the levels of HCV replication in serum and liver correlated with the degree of hepatocellular necrosis and the clinical expression of fulminant hepatitis. The same HCV strain, genotype 1a, was recovered from both episodes of fulminant hepatitis. An unusually severe acute hepatitis was also observed in the chimpanzee. The viruses recovered from the patient and the chimpanzee were almost identical and displayed relatively little quasispecies heterogeneity. Thus, the same HCV strain induced two episodes of fulminant hepatitis in a single patient and severe hepatitis in a chimpanzee, suggesting that the pathogenicity or virulence of a specific HCV strain may be important in the pathogenesis of fulminant hepatitis C.  (+info)

Specific binding of recombinant foamy virus envelope protein to host cells correlates with susceptibility to infection. (5/2159)

The interaction of simian foamy viruses (FVs) with their putative cellular receptor(s) was studied with two types of recombinant envelope protein (Env). Transient expression of full-length Env in BHK-21 cells induced syncytia formation. However, selected stable transfectants fused with naive cells but not with each other. A soluble fusion protein of the Env surface domain with the Fc fragment of a human IgG1 heavy chain (EnvSU-Ig) was produced in the baculovirus expression system, purified to homogeneity, and used for binding and competition analyses. EnvSU-Ig but not unrelated Ig fusion proteins bound to cells specifically. Neutralizing serum blocked binding of EnvSU-Ig and, vice versa, serum-mediated neutralization was abrogated by the chimeric protein. Concomitant reduction of EnvSU-Ig binding and FV susceptibility was seen in Env-expressing target cells. Although EnvSU-Ig did not inhibit FV infection, very likely due to its displacement by multivalent virus-cell interactions, this divalent ligand should help to characterize functionally and to identify the ubiquitous FV receptor.  (+info)

Long-term follow-up of chimpanzees inoculated with the first infectious clone for hepatitis C virus. (6/2159)

Two chimpanzees (Ch1535 and Ch1536) became infected with hepatitis C virus (HCV) following intrahepatic inoculation with RNA transcribed from a full-length cDNA clone of the virus. Both animals were persistently infected and have been followed for 60 weeks. They showed similar responses to infection, with transient liver enzyme elevations and liver inflammatory responses, which peaked at weeks 17 (Ch1535) and 12 (Ch1536) postinoculation (p.i.). Antibody responses to structural and nonstructural proteins were first detected at weeks 13 (Ch1535) and 10 (Ch1536) p.i. Serum RNA titers increased steadily during the first 10 to 13 weeks but decreased sharply in both animals following antibody and inflammatory responses. Despite direct evidence of humoral immune responses to multiple viral antigens, including hypervariable region 1 (HVR1), both animals remained chronically infected. Detailed sequence analysis of serum HCV RNA revealed no change in the majority HVR1 sequence in Ch1535 and a single-amino-acid mutation in Ch1536, with very little clonal variation in either animal. Full-length genome analysis at week 60 revealed several amino acid substitutions localized to antigens E1, E2, p7, NS3, and NS5. Of these, 55.6 and 40% were present as the majority sequence in serum RNA isolated at week 26 p.i. (Ch1535) and week 22 p.i. (Ch1536), respectively, and could represent immune escape mutations. Mutations accumulated at a rate of 1.57 x 10(-3) and 1.48 x 10(-3) nucleotide substitutions/site/year for Ch1535 and Ch1536, respectively. Taken together, these data indicate that establishment of a persistent HCV infection in these chimpanzees is not due to changes in HVR1; however, the possibility remains that mutations arising in other parts of the genome contributed to this persistence.  (+info)

Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. (7/2159)

The NS2 and SH genes of respiratory syncytial virus (RSV) have been separately deleted from a recombinant wild-type RSV strain, A2 (M. N. Teng and P. L. Collins, J. Virol. 73:466-473, 1998; A. Bukreyev et al., J. Virol. 71:8973-8982, 1997; and this study). The resulting viruses, designated rA2DeltaNS2 and rA2DeltaSH, were administered to chimpanzees to evaluate their levels of attenuation and immunogenicity. Recombinant virus rA2DeltaNS2 replicated to moderate levels in the upper respiratory tract, was highly attenuated in the lower respiratory tract, and induced significant resistance to challenge with wild-type RSV. The replication of rA2DeltaSH virus was only moderately reduced in the lower, but not the upper, respiratory tract. However, chimpanzees infected with either virus developed significantly less rhinorrhea than those infected with wild-type RSV. These findings demonstrate that a recombinant RSV mutant lacking either the NS2 or SH gene is attenuated and indicate that these deletions may be useful as attenuating mutations in new, live recombinant RSV vaccine candidates for both pediatric and elderly populations. The DeltaSH mutation was incorporated into a recombinant form of the cpts248/404 vaccine candidate, was evaluated for safety in seronegative chimpanzees, and can now be evaluated as a vaccine for humans.  (+info)

Generation of transmissible hepatitis C virions from a molecular clone in chimpanzees. (8/2159)

Multiple alignments of hepatitis C virus (HCV) polyproteins from six different genotypes identified a total of 22 nonconsensus mutations in a clone derived from the Hutchinson (H77) isolate. These mutations, collectively, may have contributed to the failure in generating a "functionally correct" or "infectious" clone in earlier attempts. A consensus clone was constructed after systematic repair of these mutations, which yielded infectious virions in a chimpanzee after direct intrahepatic inoculation of in vitro transcribed RNAs. This RNA-infected chimpanzee has developed hepatitis and remained HCV positive for more than 11 months. To further verify this RNA-derived infectivity, a second naive chimpanzee was injected intravenously with serum collected from the first chimpanzee. Infectivity analysis of the second chimpanzee demonstrated that the HCV infection was successfully transmitted, which validated unequivocally the infectivity of our repaired molecular clone. Amino acid sequence comparisons revealed that our repaired infectious clone had 4 mismatches with the isogenic clone reported by Kolykhalov et al. (1997, Science 277, 570-574) and 8 mismatches with that reported by Yanagi et al. (1997, Proc. Natl. Acad. Sci. USA 94, 8738-8743). At the RNA level, more mismatches (43 and 67, respectively) were identified; most of them were synonymous substitutions. Further comparisons with 16 isolates from different genotypes demonstrated that our repaired clone shares greater consensus than the reported isogenic clones. This approach of generating infectious HCV RNA validates the importance of amino acid sequence consensus in relation to the biology of HCV.  (+info)