Dietary control of triglyceride and phospholipid synthesis in rat liver slices. (1/1352)

1. The effect of dietary manipulation on the synthesis of triglycerides and phospholipids was investigated by determining the incorporation of labeled long-chain fatty acid or glycerol into these lipids in liver slices derived from normally fed, fasted, and fat-free refed rats. 2. Triglyceride synthesis was affected markedly by the dietary regime of the animal; the lowest rates were measured with fasted rats, and the highest ones with fat-free refed rats. 3. In contrast to triglyceride synthesis, phospholipid synthesis occured at virtually constant rates regardless of the dietary conditions. 4. Addition of large amounts of fatty acid to the incubation mixture resulted in a marked stimulation of triglyceride synthesis, whereas phospholipid synthesis was affected to a much smaller extent. 5. These results indicate that the synthesis of triglycerides and that of phospholipids are controlled independently, and that the availability of fatty acid in the cell contributes to the control of triglyceride synthesis.  (+info)

The synthesis and hydrolysis of long-chain fatty acyl-coenzyme A thioesters by soluble and microsomal fractions from the brain of the developing rat. (2/1352)

1. The specific activities of long-chain fatty acid-CoA ligase (EC6.2.1.3) and of long-chain fatty acyl-CoA hydrolase (EC3.1.2.2) were measured in soluble and microsomal fractions from rat brain. 2. In the presence of either palmitic acid or stearic acid, the specific activity of the ligase increased during development; the specific activity of this enzyme with arachidic acid or behenic acid was considerably lower. 3. The specific activities of palmitoyl-CoA hydrolase and of stearoyl-CoA hydrolase in the microsomal fraction decreased markedly (75%) between 6 and 20 days after birth; by contrast, the corresponding specific activities in the soluble fraction showed no decline. 4. Stearoyl-CoA hydrolase in the microsomal fraction is inhibited (99%) by bovine serum albumin; this is in contrast with the microsomal fatty acid-chain-elongation system, which is stimulated 3.9-fold by albumin. Inhibition of stearoyl-CoA hydrolase does not stimulate stearoyl-CoA chain elongation. Therefore it does not appear likely that the decline in the specific activity of hydrolase during myelogenesis is responsible for the increased rate of fatty acid chain elongation. 5. It is suggested that the decline in specific activity of the microsomal hydrolase and to a lesser extent the increase in the specific activity of the ligase is directly related to the increased demand for long-chain acyl-CoA esters during myelogenesis as substrates in the biosynthesis of myelin lipids.  (+info)

Studies on the influence of fatty acids on pyruvate dehydrogenase interconversion in rat-liver mitochondria. (3/1352)

1. The effect of fatty acids on the interconversion of pyruvate dehydrogenase between its active (nonphosphorylated) and inactive (phosphorylated) forms was measured in rat liver mitochondria respiring in state 3 with pyruvate plus malate and 2-oxoglutarate plus malate and during state 4 to state 3 transition in the presence of different substrates. The content of intramitochondrial adenine nucleotides was determined in the parallel experiments. 2. Decrease of the intramitochondrial ATP/ADP ratio with propionate and its increase with palmitoyl-L-carnitine in state 3 is accompanied by a shift of the steady-state of the pyruvate dehydrogenase system towards the active or the inactive form, respectively. 3. Transition from the high energy state (state4) to the active respiration (state3) in mitochondria oxidizing 2-oxoglutarate or plamitoyl-L-carnitine causes an increase of the amount of the active form of pyruvate dehydrogenase due to the decrease of ATP/ADP ratio in the matrix. 4. No change in ATP/ADP ratio can be observed in the presence of octanoate in mitochondria oxidizing pyruvate or 2-oxoglutarate in state 3 or during state 4 to state 3 transition. Simultanelusly, no significant change in phosphorylation state of pyruvate dehydrogenase occurs and a low amount of the enzyme in the active form is present with octanoate or octanoate plus 2-oxoglutarate. Pyruvate abolishes this effect of octanoate and shifts the steady-state of pyruvate dehydrogenase system towards the active form. 5. These results indicate that fatty acids influence the interconversion of pyruvate dehydrogenase mainly by changing intramitochondrial ATP/ADP ratio. However, the comparison of the steady-state level of the pyruvate dehydrogenase system in the presence of different substrates in various metabolic conditions provides some evidence that accumulation of acetyl-CoA and high level of NADH may promote the phosphorylation of pyruvate dehydrogenase. 6. Pyruvate exerts its protective effect against phosphorylation of pyruvate dehydrogenase in the presence of fatty acids of short, medium or long chain in a manner which depends on its concentration. It is suggested that in isolated mitochondria pyruvate counteracts the effect of acetyl-CoA and NADH on pyruvate dehydrogenase kinase.  (+info)

Histone-hydrocarbon interaction. Partition of histones in aqueous two-phase systems containing poly(ethylene glycol)-bound hydrocarbons. (4/1352)

The hydrophobic properties of histones have been examined with help of the two-phase partition technique using dextran-poly(ethylene glycol)-water systems. We have found that different fatty acid esters of poly(ethylene glycol) interact with total histones in a manner similar to proteins of the type beta-lactoglobulin and serum albumins. Thus the maximum interaction occurs when the fatty acid contains 16-18 carbon atoms. With less than eight carbon atoms in the polymer-bound fatty acid, no histone-hydrocarbon interaction is observed. The interaction of the five individual histone fractions with palmitate depends on the type of salt used and on its concentration. We suggest that the histones can be divided into three groups with decreasing hydrophobic properties: H3, H2a greater than H4, H2b greater than H1.  (+info)

Stereochemistry of the alpha-oxidation of 3-methyl-branched fatty acids in rat liver. (5/1352)

The stereochemistry of the alpha-oxidation of 3-methyl-branched fatty acids was studied in rat liver. R- and S-3-methylhexadecanoic acid were equally well alpha-oxidized in intact hepatocytes and homogenates. Subcellular fractionation studies showed that alpha-oxidation of both isomers is confined to peroxisomes. Dehydrogenation of 2-methylpentadecanal, the end-product of the peroxisomal alpha-oxidation of 3-methylhexadecanoic acid, to 2-methylpentadecanoic acid, followed by derivatization with R-1-phenylethylamine and subsequent separation of the stereoisomers by gas chromatography, revealed that the configuration of the methyl-branch is preserved throughout the whole alpha-oxidation process. Metabolism and formation of the 2-hydroxy-3-methylhexadecanoyl-CoA intermediate were also investigated. Separation of the methyl esters of the four isomers of 2-hydroxy-3-methylhexadecanoic acid was achieved by gas chromatography after derivatization of the hydroxy group with R-2-methoxy-2-trifluoromethylphenylacetic acid chloride and the absolute configuration of the four isomers was determined. Although purified peroxisomes are capable of metabolizing all four isomers of 2-hydroxy-3-methylhexadecanoyl-CoA, they can only form the (2S,3R) and the (2R,3S) isomers. Our experiments exclude the racemization of the 3-methyl branch during the alpha-oxidation process. The configuration of the 3-methyl branch does not influence the rate of alpha-oxidation, but determines the side of the 2-hydroxylation, hence the configuration of the 2-hydroxy-3-methylacyl-CoA intermediates formed during the process.  (+info)

Anandamide activates human platelets through a pathway independent of the arachidonate cascade. (6/1352)

Anandamide (arachidonoylethanolamide, AnNH) is shown to activate human platelets, a process which was not inhibited by acetylsalicylic acid (aspirin). Unlike AnNH, hydroperoxides generated thereof by lipoxygenase activity, and the congener (13-hydroxy)linoleoylethanolamide, were unable to activate platelets, though they counteracted AnNH-mediated stimulation. On the other hand, palmitoylethanolamide neither activated human platelets nor blocked the AnNH effects. AnNH inactivation by human platelets was afforded by a high-affinity transporter, which was activated by nitric oxide-donors up to 225% of the control. The internalized AnNH could thus be hydrolyzed by a fatty acid amide hydrolase (FAAH), characterized here for the first time.  (+info)

Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. (7/1352)

Enoyl-ACP reductases participate in fatty acid biosynthesis by utilizing NADH to reduce the trans double bond between positions C2 and C3 of a fatty acyl chain linked to the acyl carrier protein. The enoyl-ACP reductase from Mycobacterium tuberculosis, known as InhA, is a member of an unusual FAS-II system that prefers longer chain fatty acyl substrates for the purpose of synthesizing mycolic acids, a major component of mycobacterial cell walls. The crystal structure of InhA in complex with NAD+ and a C16 fatty acyl substrate, trans-2-hexadecenoyl-(N-acetylcysteamine)-thioester, reveals that the substrate binds in a general "U-shaped" conformation, with the trans double bond positioned directly adjacent to the nicotinamide ring of NAD+. The side chain of Tyr158 directly interacts with the thioester carbonyl oxygen of the C16 fatty acyl substrate and therefore could help stabilize the enolate intermediate, proposed to form during substrate catalysis. Hydrophobic residues, primarily from the substrate binding loop (residues 196-219), engulf the fatty acyl chain portion of the substrate. The substrate binding loop of InhA is longer than that of other enoyl-ACP reductases and creates a deeper substrate binding crevice, consistent with the ability of InhA to recognize longer chain fatty acyl substrates.  (+info)

Cysteine 29 is the major palmitoylation site on stomatin. (8/1352)

The 31 kDa membrane protein stomatin was metabolically labeled with tritiated palmitic acid in the human amniotic cell line UAC and immunoprecipitated. We show that the incorporated palmitate is sensitive to hydroxylamine, indicating the binding to cysteine residues. Stomatin contains three cysteines. By expressing a myc-tagged stomatin and substituting the three cysteines by serine, individually or in combination, we demonstrate that Cys-29 is the predominant site of palmitoylation and that Cys-86 accounts for the remaining palmitate labeling. Disruption of Cys-52 alone does not show any detectable reduction of palmitic acid incorporation. Given the organization of stomatin into homo-oligomers, the presence of multiple palmitate chains is likely to increase greatly the affinity of these oligomers for the membrane and perhaps particular lipid domains within it.  (+info)