Insect herbivory, plant defense, and early Cenozoic climate change. (57/681)

Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased.  (+info)

Effects of sampling standardization on estimates of Phanerozoic marine diversification. (58/681)

Global diversity curves reflect more than just the number of taxa that have existed through time: they also mirror variation in the nature of the fossil record and the way the record is reported. These sampling effects are best quantified by assembling and analyzing large numbers of locality-specific biotic inventories. Here, we introduce a new database of this kind for the Phanerozoic fossil record of marine invertebrates. We apply four substantially distinct analytical methods that estimate taxonomic diversity by quantifying and correcting for variation through time in the number and nature of inventories. Variation introduced by the use of two dramatically different counting protocols also is explored. We present sampling-standardized diversity estimates for two long intervals that sum to 300 Myr (Middle Ordovician-Carboniferous; Late Jurassic-Paleogene). Our new curves differ considerably from traditional, synoptic curves. For example, some of them imply unexpectedly low late Cretaceous and early Tertiary diversity levels. However, such factors as the current emphasis in the database on North America and Europe still obscure our view of the global history of marine biodiversity. These limitations will be addressed as the database and methods are refined.  (+info)

Stable isotopes data (delta13C, delta15N) from the cave bear (Ursus spelaeus): a new approach to its palaeoenvironment and dormancy. (59/681)

Palaeoclimatic data that can be extracted from the isotopic signatures of delta13C and delta15N, which are found in fossil bone collagen, should be analysed according to the specific metabolism of each species. Although Ursus spelaeus is an extinct species, its metabolism is assimilated to current, closely related species of bear. In this study, bone collagen isotopic signatures (delta13C and delta15N) of cave bears from Late Pleistocene Alpine sites were compared to those that have already been documented. The delta13C signature did not seem to follow a systematic trend according to climatic conditions, probably as a consequence of the high variability present in the values of C3 plants, which were the basis of feeding. On the contrary, the delta15N signature displayed higher values in sites corresponding to colder periods in which the delta15N signature appeared to be dominated by the physiology of dormancy. Then, due to the reuse of urea in synthesizing amino acids, the delta15N signature systematically increased along with dormancy duration. This was related to the length of winter and, in turn, depended on climate.  (+info)

Molecular dating and biogeography of the early placental mammal radiation. (60/681)

The timing and phylogenetic hierarchy of early placental mammal divergences was determined based on combined DNA sequence analysis of 18 gene segments (9779 bp) from 64 species. Using rooted and unrooted phylogenies derived from distinct theoretical approaches, strong support for the divergence of four principal clades of eutherian mammals was achieved. Minimum divergence dates of the earliest nodes in the placental mammal phylogeny were estimated with a quartet-based maximum-likelihood method that accommodates rate variation among lineages using conservative fossil calibrations from nine different nodes in the eutherian tree. These minimum estimates resolve the earliest placental mammal divergence nodes at periods between 64 and 104 million years ago, in essentially every case predating the Cretaceous-Tertiary (K-T) boundary. The pattern and timing of these divergences allow a geographic interpretation of the primary branching events in eutherian history, likely originating in the southern supercontinent Gondwanaland coincident with its breakup into Africa and South America 95-105 million years ago. We propose an integrated genomic, paleontological, and biogeographic hypothesis to account for these earliest splits on the placental mammal family tree and address current discrepancies between fossil and molecular evidence.  (+info)

A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. (61/681)

A computer simulation of North American end-Pleistocene human and large herbivore population dynamics correctly predicts the extinction or survival of 32 out of 41 prey species. Slow human population growth rates, random hunting, and low maximum hunting effort are assumed; additional parameters are based on published values. Predictions are close to observed values for overall extinction rates, human population densities, game consumption rates, and the temporal overlap of humans and extinct species. Results are robust to variation in unconstrained parameters. This fully mechanistic model accounts for megafaunal extinction without invoking climate change and secondary ecological effects.  (+info)

Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. (62/681)

In order to assess the presence of tuberculosis in Pleistocene bison and the origin of tuberculosis in North America, 2 separate DNA extractions were performed by 2 separate laboratories on samples from the metacarpal of an extinct long-horned bison that was radiocarbon dated at 17,870+/-230 years before present and that had pathological changes suggestive of tuberculosis. Polymerase chain reaction amplification isolated fragments of tuberculosis DNA, which were sequenced, and on which spoligotyping was also performed to help determine its relationship to the various members of the Mycobacterium tuberculosis complex. Extensive precautions against contamination with modern M. tuberculosis complex DNA were employed, including analysis of paleontologic and modern specimens in 2 geographically separate laboratories.  (+info)

Nostril position in dinosaurs and other vertebrates and its significance for nasal function. (63/681)

Many dinosaurs have enormous and complicated bony nasal apertures. Functional interpretation requires knowledge of the location of the external opening in the skin. Traditionally, the fleshy nostril of dinosaurs has been placed in the back of the bony opening, but studies of extant dinosaur relatives suggest that it is located far forward. Narial blood supply and cavernous tissue corroborate the rostral position in dinosaurs. A rostral nostril was, and remains, a virtually invariant rule of construction among Amniota, which has consequences for (i) nasal airstreaming, and hence various physiological parameters, and (ii) the collection of behaviorally relevant circumoral odorants.  (+info)

Virtual anthropology (VA): a call for glasnost in paleoanthropology. (64/681)

The adventurous scientist, with a hat protecting him from the fierce sun as he travels from one remote place to another, hunting for fossils of our ancestors, has been a part of the romantic imagination associated with anthropological research in the 20th Century. This picture of the paleoanthropologist still retains a grain of truth. Indeed, many new sites were discovered under troublesome conditions in the recent past and have added substantial information about our origins. But on another front, probably less sensational but no less important, are contributions stemming from the analysis of the already discovered fossils. With the latter, a rapid evolution in anthropologic research took place concurrently with advances in computer technology. After ambitious activities by a handful of researchers in some specialized laboratories, a methodologic inventory evolved to extract critical information about fossilized specimens, most of it preserved in the largely inaccessible interior as unrevealed anatomic structures. Many methodologies have become established but, for various reasons, access to both the actual and the digitized fossils is still limited. It is time for more transparency, for a glasnost in paleoanthropology. Herein are presented some answers to the question of how a high-tech approach to anthropology can be integrated into a predominantly conservative field of research, and what are the main challenges for development in the future.  (+info)